Abstract:This paper introduces a comprehensive framework for Post-Disaster Search and Rescue (PDSR), aiming to optimize search and rescue operations leveraging Unmanned Aerial Vehicles (UAVs). The primary goal is to improve the precision and availability of sensing capabilities, particularly in various catastrophic scenarios. Central to this concept is the rapid deployment of UAV swarms equipped with diverse sensing, communication, and intelligence capabilities, functioning as an integrated system that incorporates multiple technologies and approaches for efficient detection of individuals buried beneath rubble or debris following a disaster. Within this framework, we propose architectural solution and address associated challenges to ensure optimal performance in real-world disaster scenarios. The proposed framework aims to achieve complete coverage of damaged areas significantly faster than traditional methods using a multi-tier swarm architecture. Furthermore, integrating multi-modal sensing data with machine learning for data fusion could enhance detection accuracy, ensuring precise identification of survivors.
Abstract:We introduce Atlas-Chat, the first-ever collection of large language models specifically developed for dialectal Arabic. Focusing on Moroccan Arabic, also known as Darija, we construct our instruction dataset by consolidating existing Darija language resources, creating novel datasets both manually and synthetically, and translating English instructions with stringent quality control. Atlas-Chat-9B and 2B models, fine-tuned on the dataset, exhibit superior ability in following Darija instructions and performing standard NLP tasks. Notably, our models outperform both state-of-the-art and Arabic-specialized LLMs like LLaMa, Jais, and AceGPT, e.g., achieving a 13% performance boost over a larger 13B model on DarijaMMLU, in our newly introduced evaluation suite for Darija covering both discriminative and generative tasks. Furthermore, we perform an experimental analysis of various fine-tuning strategies and base model choices to determine optimal configurations. All our resources are publicly accessible, and we believe our work offers comprehensive design methodologies of instruction-tuning for low-resource language variants, which are often neglected in favor of data-rich languages by contemporary LLMs.
Abstract:Autonomous robots use simultaneous localization and mapping (SLAM) for efficient and safe navigation in various environments. LiDAR sensors are integral in these systems for object identification and localization. However, LiDAR systems though effective in detecting solid objects (e.g., trash bin, bottle, etc.), encounter limitations in identifying semitransparent or non-tangible objects (e.g., fire, smoke, steam, etc.) due to poor reflecting characteristics. Additionally, LiDAR also fails to detect features such as navigation signs and often struggles to detect certain hazardous materials that lack a distinct surface for effective laser reflection. In this paper, we propose a highly accurate stereo-vision approach to complement LiDAR in autonomous robots. The system employs advanced stereo vision-based object detection to detect both tangible and non-tangible objects and then uses simple machine learning to precisely estimate the depth and size of the object. The depth and size information is then integrated into the SLAM process to enhance the robot's navigation capabilities in complex environments. Our evaluation, conducted on an autonomous robot equipped with LiDAR and stereo-vision systems demonstrates high accuracy in the estimation of an object's depth and size. A video illustration of the proposed scheme is available at: \url{https://www.youtube.com/watch?v=nusI6tA9eSk}.
Abstract:The metaverse, envisioned as the next digital frontier for avatar-based virtual interaction, involves high-performance models. In this dynamic environment, users' tasks frequently shift, requiring fast model personalization despite limited data. This evolution consumes extensive resources and requires vast data volumes. To address this, meta-learning emerges as an invaluable tool for metaverse users, with federated meta-learning (FML), offering even more tailored solutions owing to its adaptive capabilities. However, the metaverse is characterized by users heterogeneity with diverse data structures, varied tasks, and uneven sample sizes, potentially undermining global training outcomes due to statistical difference. Given this, an urgent need arises for smart coalition formation that accounts for these disparities. This paper introduces a dual game-theoretic framework for metaverse services involving meta-learners as workers to manage FML. A blockchain-based cooperative coalition formation game is crafted, grounded on a reputation metric, user similarity, and incentives. We also introduce a novel reputation system based on users' historical contributions and potential contributions to present tasks, leveraging correlations between past and new tasks. Finally, a Stackelberg game-based incentive mechanism is presented to attract reliable workers to participate in meta-learning, minimizing users' energy costs, increasing payoffs, boosting FML efficacy, and improving metaverse utility. Results show that our dual game framework outperforms best-effort, random, and non-uniform clustering schemes - improving training performance by up to 10%, cutting completion times by as much as 30%, enhancing metaverse utility by more than 25%, and offering up to 5% boost in training efficiency over non-blockchain systems, effectively countering misbehaving users.
Abstract:This paper presents Haris, an advanced autonomous mobile robot system for tracking the location of vehicles in crowded car parks using license plate recognition. The system employs simultaneous localization and mapping (SLAM) for autonomous navigation and precise mapping of the parking area, eliminating the need for GPS dependency. In addition, the system utilizes a sophisticated framework using computer vision techniques for object detection and automatic license plate recognition (ALPR) for reading and associating license plate numbers with location data. This information is subsequently synchronized with a back-end service and made accessible to users via a user-friendly mobile app, offering effortless vehicle location and alleviating congestion within the parking facility. The proposed system has the potential to improve the management of short-term large outdoor parking areas in crowded places such as sports stadiums. The demo of the robot can be found on https://youtu.be/ZkTCM35fxa0?si=QjggJuN7M1o3oifx.
Abstract:The RSNA-MICCAI brain tumor radiogenomic classification challenge aimed to predict MGMT biomarker status in glioblastoma through binary classification on Multi parameter mpMRI scans: T1w, T1wCE, T2w and FLAIR. The dataset is splitted into three main cohorts: training set, validation set which were used during training, and the testing were only used during final evaluation. Images were either in a DICOM format or in Png format. different architectures were used to investigate the problem including the 3D version of Vision Transformer (ViT3D), ResNet50, Xception and EfficientNet-B3. AUC was used as the main evaluation metric and the results showed an advantage for both the ViT3D and the Xception models achieving 0.6015 and 0.61745 respectively on the testing set. compared to other results, our results proved to be valid given the complexity of the task. further improvements can be made through exploring different strategies, different architectures and more diverse datasets.
Abstract:Telemedicine applications have recently received substantial potential and interest, especially after the COVID-19 pandemic. Remote experience will help people get their complex surgery done or transfer knowledge to local surgeons, without the need to travel abroad. Even with breakthrough improvements in internet speeds, the delay in video streaming is still a hurdle in telemedicine applications. This imposes using image compression and region of interest (ROI) techniques to reduce the data size and transmission needs. This paper proposes a Deep Reinforcement Learning (DRL) model that intelligently adapts the ROI size and non-ROI quality depending on the estimated throughput. The delay and structural similarity index measure (SSIM) comparison are used to assess the DRL model. The comparison findings and the practical application reveal that DRL is capable of reducing the delay by 13% and keeping the overall quality in an acceptable range. Since the latency has been significantly reduced, these findings are a valuable enhancement to telemedicine applications.
Abstract:The vision of the upcoming 6G technologies, characterized by ultra-dense network, low latency, and fast data rate is to support Pervasive AI (PAI) using zero-touch solutions enabling self-X (e.g., self-configuration, self-monitoring, and self-healing) services. However, the research on 6G is still in its infancy, and only the first steps have been taken to conceptualize its design, investigate its implementation, and plan for use cases. Toward this end, academia and industry communities have gradually shifted from theoretical studies of AI distribution to real-world deployment and standardization. Still, designing an end-to-end framework that systematizes the AI distribution by allowing easier access to the service using a third-party application assisted by a zero-touch service provisioning has not been well explored. In this context, we introduce a novel platform architecture to deploy a zero-touch PAI-as-a-Service (PAIaaS) in 6G networks supported by a blockchain-based smart system. This platform aims to standardize the pervasive AI at all levels of the architecture and unify the interfaces in order to facilitate the service deployment across application and infrastructure domains, relieve the users worries about cost, security, and resource allocation, and at the same time, respect the 6G stringent performance requirements. As a proof of concept, we present a Federated Learning-as-a-service use case where we evaluate the ability of our proposed system to self-optimize and self-adapt to the dynamics of 6G networks in addition to minimizing the users' perceived costs.
Abstract:Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.
Abstract:Although Deep Neural Networks (DNN) have become the backbone technology of several ubiquitous applications, their deployment in resource-constrained machines, e.g., Internet of Things (IoT) devices, is still challenging. To satisfy the resource requirements of such a paradigm, collaborative deep inference with IoT synergy was introduced. However, the distribution of DNN networks suffers from severe data leakage. Various threats have been presented, including black-box attacks, where malicious participants can recover arbitrary inputs fed into their devices. Although many countermeasures were designed to achieve privacy-preserving DNN, most of them result in additional computation and lower accuracy. In this paper, we present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy, without sacrificing the model performance. Particularly, we examine different DNN partitions that make the model susceptible to black-box threats and we derive the amount of data that should be allocated per device to hide proprieties of the original input. We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data. Next, to relax the optimal solution, we shape our approach as a Reinforcement Learning (RL) design that supports heterogeneous devices as well as multiple DNNs/datasets.