Abstract:The RSNA-MICCAI brain tumor radiogenomic classification challenge aimed to predict MGMT biomarker status in glioblastoma through binary classification on Multi parameter mpMRI scans: T1w, T1wCE, T2w and FLAIR. The dataset is splitted into three main cohorts: training set, validation set which were used during training, and the testing were only used during final evaluation. Images were either in a DICOM format or in Png format. different architectures were used to investigate the problem including the 3D version of Vision Transformer (ViT3D), ResNet50, Xception and EfficientNet-B3. AUC was used as the main evaluation metric and the results showed an advantage for both the ViT3D and the Xception models achieving 0.6015 and 0.61745 respectively on the testing set. compared to other results, our results proved to be valid given the complexity of the task. further improvements can be made through exploring different strategies, different architectures and more diverse datasets.
Abstract:The development of facial biometric systems has contributed greatly to the development of the computer vision field. Nowadays, there's always a need to develop a multimodal system that combines multiple biometric traits in an efficient, meaningful way. In this paper, we introduce "IdentiFace" which is a multimodal facial biometric system that combines the core of facial recognition with some of the most important soft biometric traits such as gender, face shape, and emotion. We also focused on developing the system using only VGG-16 inspired architecture with minor changes across different subsystems. This unification allows for simpler integration across modalities. It makes it easier to interpret the learned features between the tasks which gives a good indication about the decision-making process across the facial modalities and potential connection. For the recognition problem, we acquired a 99.2% test accuracy for five classes with high intra-class variations using data collected from the FERET database[1]. We achieved 99.4% on our dataset and 95.15% on the public dataset[2] in the gender recognition problem. We were also able to achieve a testing accuracy of 88.03% in the face-shape problem using the celebrity face-shape dataset[3]. Finally, we achieved a decent testing accuracy of 66.13% in the emotion task which is considered a very acceptable accuracy compared to related work on the FER2013 dataset[4].