Abstract:Computer aided diagnosis systems can provide non-invasive, low-cost tools to support clinicians. These systems have the potential to assist the diagnosis and monitoring of neurodegenerative disorders, in particular Parkinson's disease (PD). Handwriting plays a special role in the context of PD assessment. In this paper, the discriminating power of "dynamically enhanced" static images of handwriting is investigated. The enhanced images are synthetically generated by exploiting simultaneously the static and dynamic properties of handwriting. Specifically, we propose a static representation that embeds dynamic information based on: (i) drawing the points of the samples, instead of linking them, so as to retain temporal/velocity information; and (ii) adding pen-ups for the same purpose. To evaluate the effectiveness of the new handwriting representation, a fair comparison between this approach and state-of-the-art methods based on static and dynamic handwriting is conducted on the same dataset, i.e. PaHaW. The classification workflow employs transfer learning to extract meaningful features from multiple representations of the input data. An ensemble of different classifiers is used to achieve the final predictions. Dynamically enhanced static handwriting is able to outperform the results obtained by using static and dynamic handwriting separately.
Abstract:Handwritten signatures are biometric traits at the center of debate in the scientific community. Over the last 40 years, the interest in signature studies has grown steadily, having as its main reference the application of automatic signature verification, as previously published reviews in 1989, 2000, and 2008 bear witness. Ever since, and over the last 10 years, the application of handwritten signature technology has strongly evolved, and much research has focused on the possibility of applying systems based on handwritten signature analysis and processing to a multitude of new fields. After several years of haphazard growth of this research area, it is time to assess its current developments for their applicability in order to draw a structured way forward. This perspective reports a systematic review of the last 10 years of the literature on handwritten signatures with respect to the new scenario, focusing on the most promising domains of research and trying to elicit possible future research directions in this subject.