Abstract:Handwritten signatures are biometric traits at the center of debate in the scientific community. Over the last 40 years, the interest in signature studies has grown steadily, having as its main reference the application of automatic signature verification, as previously published reviews in 1989, 2000, and 2008 bear witness. Ever since, and over the last 10 years, the application of handwritten signature technology has strongly evolved, and much research has focused on the possibility of applying systems based on handwritten signature analysis and processing to a multitude of new fields. After several years of haphazard growth of this research area, it is time to assess its current developments for their applicability in order to draw a structured way forward. This perspective reports a systematic review of the last 10 years of the literature on handwritten signatures with respect to the new scenario, focusing on the most promising domains of research and trying to elicit possible future research directions in this subject.
Abstract:The Kinematic Theory of rapid movements and its associated Sigma-Lognormal model have been extensively used in a large variety of applications. While the physical and biological meaning of the model have been widely tested and validated for rapid movements, some shortcomings have been detected when it is used with continuous long and complex movements. To alleviate such drawbacks, and inspired by the motor equivalence theory and a conceivable visual feedback, this paper proposes a novel framework to extract the Sigma-Lognormal parameters, namely iDeLog. Specifically, iDeLog consists of two steps. The first one, influenced by the motor equivalence model, separately derives an initial action plan defined by a set of virtual points and angles from the trajectory and a sequence of lognormals from the velocity. In the second step, based on a hypothetical visual feedback compatible with an open-loop motor control, the virtual target points of the action plan are iteratively moved to improve the matching between the observed and reconstructed trajectory and velocity. During experiments conducted with handwritten signatures, iDeLog obtained promising results as compared to the previous development of the Sigma-Lognormal.
Abstract:Signature synthesis is a computation technique that generates artificial specimens which can support decision making in automatic signature verification. A lot of work has been dedicated to this subject, which centres on synthesizing dynamic and static two-dimensional handwriting on canvas. This paper proposes a framework to generate synthetic 3D on-air signatures exploiting the lognormality principle, which mimics the complex neuromotor control processes at play as the fingertip moves. Addressing the usual cases involving the development of artificial individuals and duplicated samples, this paper contributes to the synthesis of: (1) the trajectory and velocity of entirely 3D new signatures; (2) kinematic information when only the 3D trajectory of the signature is known, and (3) duplicate samples of 3D real signatures. Validation was conducted by generating synthetic 3D signature databases mimicking real ones and showing that automatic signature verifications of genuine and skilled forgeries report performances similar to those of real and synthetic databases. We also observed that training 3D automatic signature verifiers with duplicates can reduce errors. We further demonstrated that our proposal is also valid for synthesizing 3D air writing and gestures. Finally, a perception test confirmed the human likeness of the generated specimens. The databases generated are publicly available, only for research purposes, at .