Abstract:The exponential growth of scientific publications in recent years has posed a significant challenge in effective and efficient categorization. This paper introduces a novel approach that combines instance-based learning and ensemble learning techniques for classifying scientific papers into relevant research fields. Working with a classification system with a group of research fields, first a number of typical seed papers are allocated to each of the fields manually. Then for each paper that needs to be classified, we compare it with all the seed papers in every field. Contents and citations are considered separately. An ensemble-based method is then employed to make the final decision. Experimenting with the datasets from DBLP, our experimental results demonstrate that the proposed classification method is effective and efficient in categorizing papers into various research areas. We also find that both content and citation features are useful for the classification of scientific papers.
Abstract:Diffusion models have achieved state-of-the-art synthesis quality on visual and audio tasks, and recent works adapt them to textual data by diffusing on the embedding space. But the difference between the continuous data space and the embedding space raises challenges to the diffusion model, which have not been carefully explored. In this paper, we conduct systematic studies and analyze the challenges threefold. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the loss function. Secondly, as the norm of embedding varies between popular and rare words, adding the same noise scale will lead to sub-optimal results. In addition, we find that noises sampled from a standard Gaussian distribution may distract the diffusion process. To solve the above challenges, we propose Difformer, a denoising diffusion probabilistic model based on Transformer, which consists of three techniques including utilizing an anchor loss function, a layer normalization module for embeddings, and a norm factor to the Gaussian noise. All techniques are complementary to each other and critical to boosting the model performance together. Experiments are conducted on benchmark datasets over two seminal text generation tasks including machine translation and text summarization. The results show that Difformer significantly outperforms the embedding diffusion baselines, while achieving competitive results with strong autoregressive baselines.
Abstract:What are the most popular research topics in Artificial Intelligence (AI)? We formulate the problem as extracting top-$k$ topics that can best represent a given area with the help of knowledge base. We theoretically prove that the problem is NP-hard and propose an optimization model, FastKATE, to address this problem by combining both explicit and latent representations for each topic. We leverage a large-scale knowledge base (Wikipedia) to generate topic embeddings using neural networks and use this kind of representations to help capture the representativeness of topics for given areas. We develop a fast heuristic algorithm to efficiently solve the problem with a provable error bound. We evaluate the proposed model on three real-world datasets. Experimental results demonstrate our model's effectiveness, robustness, real-timeness (return results in $<1$s), and its superiority over several alternative methods.
Abstract:With the development of state-of-art deep reinforcement learning, we can efficiently tackle continuous control problems. But the deep reinforcement learning method for continuous control is based on historical data, which would make unpredicted decisions in unfamiliar scenarios. Combining deep reinforcement learning and safety based control can get good performance for self-driving and collision avoidance. In this passage, we use the Deep Deterministic Policy Gradient algorithm to implement autonomous driving without vehicles around. The vehicle can learn the driving policy in a stable and familiar environment, which is efficient and reliable. Then we use the artificial potential field to design collision avoidance algorithm with vehicles around. The path tracking method is also taken into consideration. The combination of deep reinforcement learning and safety based control performs well in most scenarios.