The exponential growth of scientific publications in recent years has posed a significant challenge in effective and efficient categorization. This paper introduces a novel approach that combines instance-based learning and ensemble learning techniques for classifying scientific papers into relevant research fields. Working with a classification system with a group of research fields, first a number of typical seed papers are allocated to each of the fields manually. Then for each paper that needs to be classified, we compare it with all the seed papers in every field. Contents and citations are considered separately. An ensemble-based method is then employed to make the final decision. Experimenting with the datasets from DBLP, our experimental results demonstrate that the proposed classification method is effective and efficient in categorizing papers into various research areas. We also find that both content and citation features are useful for the classification of scientific papers.