Picture for Fabian Wagner

Fabian Wagner

Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany

On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation

Add code
May 29, 2024
Figure 1 for On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
Figure 2 for On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
Figure 3 for On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
Figure 4 for On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
Viaarxiv icon

Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images

Add code
Apr 23, 2024
Figure 1 for Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images
Figure 2 for Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images
Figure 3 for Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images
Viaarxiv icon

Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy

Add code
Apr 23, 2024
Figure 1 for Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy
Figure 2 for Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy
Figure 3 for Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy
Viaarxiv icon

Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models

Add code
Apr 04, 2024
Figure 1 for Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models
Figure 2 for Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models
Figure 3 for Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models
Figure 4 for Segmentation-Guided Knee Radiograph Generation using Conditional Diffusion Models
Viaarxiv icon

Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction

Add code
Mar 04, 2024
Figure 1 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 2 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 3 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 4 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Viaarxiv icon

A gradient-based approach to fast and accurate head motion compensation in cone-beam CT

Add code
Jan 17, 2024
Viaarxiv icon

Focus on Content not Noise: Improving Image Generation for Nuclei Segmentation by Suppressing Steganography in CycleGAN

Add code
Aug 03, 2023
Viaarxiv icon

Motion Compensation via Epipolar Consistency for In-Vivo X-Ray Microscopy

Add code
Mar 01, 2023
Figure 1 for Motion Compensation via Epipolar Consistency for In-Vivo X-Ray Microscopy
Figure 2 for Motion Compensation via Epipolar Consistency for In-Vivo X-Ray Microscopy
Viaarxiv icon

Optimizing CT Scan Geometries With and Without Gradients

Add code
Feb 13, 2023
Viaarxiv icon

Geometric Constraints Enable Self-Supervised Sinogram Inpainting in Sparse-View Tomography

Add code
Feb 13, 2023
Viaarxiv icon