Picture for Maximilian Rohleder

Maximilian Rohleder

Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany, Siemens Healthcare GmbH, Forchheim, Germany

A Realistic Collimated X-Ray Image Simulation Pipeline

Add code
Nov 15, 2024
Viaarxiv icon

Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction

Add code
Mar 04, 2024
Figure 1 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 2 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 3 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 4 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Viaarxiv icon

Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model

Add code
Feb 13, 2023
Figure 1 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 2 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 3 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 4 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Viaarxiv icon

Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction

Add code
Dec 05, 2022
Viaarxiv icon

On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

Add code
Nov 03, 2022
Viaarxiv icon