Abstract:Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
Abstract:We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based Transformer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 5.8% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc .
Abstract:We introduce AG-VPReID, a challenging large-scale benchmark dataset for aerial-ground video-based person re-identification (ReID), comprising 6,632 identities, 32,321 tracklets, and 9.6 million frames captured from drones (15-120m altitude), CCTV, and wearable cameras. This dataset presents a real-world benchmark to investigate the robustness of Person ReID approaches against the unique challenges of cross-platform aerial-ground settings. To address these challenges, we propose AG-VPReID-Net, an end-to-end framework combining three complementary streams: (1) an Adapted Temporal-Spatial Stream addressing motion pattern inconsistencies and temporal feature learning, (2) a Normalized Appearance Stream using physics-informed techniques to tackle resolution and appearance changes, and (3) a Multi-Scale Attention Stream handling scale variations across drone altitudes. Our approach integrates complementary visual-semantic information from all streams to generate robust, viewpoint-invariant person representations. Extensive experiments demonstrate that AG-VPReID-Net outperforms state-of-the-art approaches on both our new dataset and other existing video-based ReID benchmarks, showcasing its effectiveness and generalizability. The relatively lower performance of all state-of-the-art approaches, including our proposed approach, on our new dataset highlights its challenging nature. The AG-VPReID dataset, code and models are available at https://github.com/agvpreid25/AG-VPReID-Net.
Abstract:Hyperspectral object tracking using snapshot mosaic cameras is emerging as it provides enhanced spectral information alongside spatial data, contributing to a more comprehensive understanding of material properties. Using transformers, which have consistently outperformed convolutional neural networks (CNNs) in learning better feature representations, would be expected to be effective for Hyperspectral object tracking. However, training large transformers necessitates extensive datasets and prolonged training periods. This is particularly critical for complex tasks like object tracking, and the scarcity of large datasets in the hyperspectral domain acts as a bottleneck in achieving the full potential of powerful transformer models. This paper proposes an effective methodology that adapts large pretrained transformer-based foundation models for hyperspectral object tracking. We propose an adaptive, learnable spatial-spectral token fusion module that can be extended to any transformer-based backbone for learning inherent spatial-spectral features in hyperspectral data. Furthermore, our model incorporates a cross-modality training pipeline that facilitates effective learning across hyperspectral datasets collected with different sensor modalities. This enables the extraction of complementary knowledge from additional modalities, whether or not they are present during testing. Our proposed model also achieves superior performance with minimal training iterations.
Abstract:Zero-shot composed image retrieval (ZS-CIR) enables image search using a reference image and text prompt without requiring specialized text-image composition networks trained on large-scale paired data. However, current ZS-CIR approaches face three critical limitations in their reliance on composed text embeddings: static query embedding representations, insufficient utilization of image embeddings, and suboptimal performance when fusing text and image embeddings. To address these challenges, we introduce the Prompt Directional Vector (PDV), a simple yet effective training-free enhancement that captures semantic modifications induced by user prompts. PDV enables three key improvements: (1) dynamic composed text embeddings where prompt adjustments are controllable via a scaling factor, (2) composed image embeddings through semantic transfer from text prompts to image features, and (3) weighted fusion of composed text and image embeddings that enhances retrieval by balancing visual and semantic similarity. Our approach serves as a plug-and-play enhancement for existing ZS-CIR methods with minimal computational overhead. Extensive experiments across multiple benchmarks demonstrate that PDV consistently improves retrieval performance when integrated with state-of-the-art ZS-CIR approaches, particularly for methods that generate accurate compositional embeddings. The code will be publicly available.
Abstract:We developed a generative patch based 3D image registration model that can register very high resolution images obtained from a biochemical process name tissue clearing. Tissue clearing process removes lipids and fats from the tissue and make the tissue transparent. When cleared tissues are imaged with Light-sheet fluorescent microscopy, the resulting images give a clear window to the cellular activities and dynamics inside the tissue.Thus the images obtained are very rich with cellular information and hence their resolution is extremely high (eg .2560x2160x676). Analyzing images with such high resolution is a difficult task for any image analysis pipeline.Image registration is a common step in image analysis pipeline when comparison between images are required. Traditional image registration methods fail to register images with such extant. In this paper we addressed this very high resolution image registration issue by proposing a patch-based generative network named InvGAN. Our proposed network can register very high resolution tissue cleared images. The tissue cleared dataset used in this paper are obtained from a tissue clearing protocol named CUBIC. We compared our method both with traditional and deep-learning based registration methods.Two different versions of CUBIC dataset are used, representing two different resolutions 25% and 100% respectively. Experiments on two different resolutions clearly show the impact of resolution on the registration quality. At 25% resolution, our method achieves comparable registration accuracy with very short time (7 minutes approximately). At 100% resolution, most of the traditional registration methods fail except Elastix registration tool.Elastix takes 28 hours to register where proposed InvGAN takes only 10 minutes.
Abstract:Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5\% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31\% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
Abstract:Unmanned aerial vehicle-assisted disaster recovery missions have been promoted recently due to their reliability and flexibility. Machine learning algorithms running onboard significantly enhance the utility of UAVs by enabling real-time data processing and efficient decision-making, despite being in a resource-constrained environment. However, the limited bandwidth and intermittent connectivity make transmitting the outputs to ground stations challenging. This paper proposes a novel semantic extractor that can be adopted into any machine learning downstream task for identifying the critical data required for decision-making. The semantic extractor can be executed onboard which results in a reduction of data that needs to be transmitted to ground stations. We test the proposed architecture together with the semantic extractor on two publicly available datasets, FloodNet and RescueNet, for two downstream tasks: visual question answering and disaster damage level classification. Our experimental results demonstrate the proposed method maintains high accuracy across different downstream tasks while significantly reducing the volume of transmitted data, highlighting the effectiveness of our semantic extractor in capturing task-specific salient information.
Abstract:Received signal strength (RSS) information has seldom been incorporated in the direct position determination (DPD) method of passive radio emitter localization to date. Further, the common use of directional emitters modulates the RSS such that omnidirectional assumptions would dramatically decrease accuracy. This paper introduces a new DPD approach utilizing an RSS- enhanced adaptive beamforming method demonstrating on par or better than state-of-the-art performance at very low SNR for omnidirectional emitters. The technique is then applied to directional emitters taking the imposed RSS modulation into account using a beampattern library, significantly improving localization region confidence as compared to omnidirectional assumption approaches. This is the first approach to date in the open literature for localizing directional emitters.
Abstract:Early diagnosis of Autism Spectrum Disorder (ASD) is an effective and favorable step towards enhancing the health and well-being of children with ASD. Manual ASD diagnosis testing is labor-intensive, complex, and prone to human error due to several factors contaminating the results. This paper proposes a novel framework that exploits the laws of physics for ASD severity recognition. The proposed physics-informed neural network architecture encodes the behaviour of the subject extracted by observing a part of the skeleton-based motion trajectory in a higher dimensional latent space. Two decoders, namely physics-based and non-physics-based decoder, use this latent embedding and predict the future motion patterns. The physics branch leverages the laws of physics that apply to a skeleton sequence in the prediction process while the non-physics-based branch is optimised to minimise the difference between the predicted and actual motion of the subject. A classifier also leverages the same latent space embeddings to recognise the ASD severity. This dual generative objective explicitly forces the network to compare the actual behaviour of the subject with the general normal behaviour of children that are governed by the laws of physics, aiding the ASD recognition task. The proposed method attains state-of-the-art performance on multiple ASD diagnosis benchmarks. To illustrate the utility of the proposed framework beyond the task ASD diagnosis, we conduct a third experiment using a publicly available benchmark for the task of fall prediction and demonstrate the superiority of our model.