Abstract:Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5\% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31\% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
Abstract:Received signal strength (RSS) information has seldom been incorporated in the direct position determination (DPD) method of passive radio emitter localization to date. Further, the common use of directional emitters modulates the RSS such that omnidirectional assumptions would dramatically decrease accuracy. This paper introduces a new DPD approach utilizing an RSS- enhanced adaptive beamforming method demonstrating on par or better than state-of-the-art performance at very low SNR for omnidirectional emitters. The technique is then applied to directional emitters taking the imposed RSS modulation into account using a beampattern library, significantly improving localization region confidence as compared to omnidirectional assumption approaches. This is the first approach to date in the open literature for localizing directional emitters.
Abstract:This paper addresses a critical preliminary step in radar signal processing: detecting the presence of a radar signal and robustly estimating its bandwidth. Existing methods which are largely statistical feature-based approaches face challenges in electronic warfare (EW) settings where prior information about signals is lacking. While alternate deep learning based methods focus on more challenging environments, they primarily formulate this as a binary classification problem. In this research, we propose a novel methodology that not only detects the presence of a signal, but also localises it in the time domain and estimates its operating frequency band at that point in time. To achieve robust estimation, we introduce a compound loss function that leverages complementary information from both time-domain and frequency-domain representations. By integrating these approaches, we aim to improve the efficiency and accuracy of radar signal detection and parameter estimation, reducing both unnecessary resource consumption and human effort in downstream tasks.
Abstract:Radio signal recognition is a crucial function in electronic warfare. Precise identification and localisation of radar pulse activities are required by electronic warfare systems to produce effective countermeasures. Despite the importance of these tasks, deep learning-based radar pulse activity recognition methods have remained largely underexplored. While deep learning for radar modulation recognition has been explored previously, classification tasks are generally limited to short and non-interleaved IQ signals, limiting their applicability to military applications. To address this gap, we introduce an end-to-end multi-stage learning approach to detect and localise pulse activities of interleaved radar signals across an extended time horizon. We propose a simple, yet highly effective multi-stage architecture for incrementally predicting fine-grained segmentation masks that localise radar pulse activities across multiple channels. We demonstrate the performance of our approach against several reference models on a novel radar dataset, while also providing a first-of-its-kind benchmark for radar pulse activity segmentation.
Abstract:Radio signal recognition is a crucial task in both civilian and military applications, as accurate and timely identification of unknown signals is an essential part of spectrum management and electronic warfare. The majority of research in this field has focused on applying deep learning for modulation classification, leaving the task of signal characterisation as an understudied area. This paper addresses this gap by presenting an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem. We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks. We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
Abstract:Recently, in-bed human pose estimation has attracted the interest of researchers due to its relevance to a wide range of healthcare applications. Compared to the general problem of human pose estimation, in-bed pose estimation has several inherent challenges, the most prominent being frequent and severe occlusions caused by bedding. In this paper we explore the effective use of images from multiple non-visual and privacy-preserving modalities such as depth, long-wave infrared (LWIR) and pressure maps for the task of in-bed pose estimation in two settings. First, we explore the effective fusion of information from different imaging modalities for better pose estimation. Secondly, we propose a framework that can estimate in-bed pose estimation when visible images are unavailable, and demonstrate the applicability of fusion methods to scenarios where only LWIR images are available. We analyze and demonstrate the effect of fusing features from multiple modalities. For this purpose, we consider four different techniques: 1) Addition, 2) Concatenation, 3) Fusion via learned modal weights, and 4) End-to-end fully trainable approach; with a state-of-the-art pose estimation model. We also evaluate the effect of reconstructing a data-rich modality (i.e., visible modality) from a privacy-preserving modality with data scarcity (i.e., long-wavelength infrared) for in-bed human pose estimation. For reconstruction, we use a conditional generative adversarial network. We conduct ablative studies across different design decisions of our framework. This includes selecting features with different levels of granularity, using different fusion techniques, and varying model parameters. Through extensive evaluations, we demonstrate that our method produces on par or better results compared to the state-of-the-art.
Abstract:This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing approaches where the parametric hand models are employed as the prior, we show that the hand mesh can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN to learn the mesh through end-to-end adversarial training. By interpreting the mesh as a graph, our model is able to capture the topological relationship among the mesh vertices. We also introduce a 3D surface descriptor into the GAN architecture to further capture the 3D features associated. We experiment two approaches where one can reap the benefits of coupled groundtruth data availability of images and the corresponding meshes, while the other combats the more challenging problem of mesh estimations without the corresponding groundtruth. Through extensive evaluations we demonstrate that the proposed method outperforms the state-of-the-art.
Abstract:Establishing semantic correspondence across images when the objects in the images have undergone complex deformations remains a challenging task in the field of computer vision. In this paper, we propose a hierarchical method to tackle this problem by first semantically targeting the foreground objects to localize the search space and then looking deeply into multiple levels of the feature representation to search for point-level correspondence. In contrast to existing approaches, which typically penalize large discrepancies, our approach allows for significant displacements, with the aim to accommodate large deformations of the objects in scene. Localizing the search space by semantically matching object-level correspondence, our method robustly handles large deformations of objects. Representing the target region by concatenated hypercolumn features which take into account the hierarchical levels of the surrounding context, helps to clear the ambiguity to further improve the accuracy. By conducting multiple experiments across scenes with non-rigid objects, we validate the proposed approach, and show that it outperforms the state of the art methods for semantic correspondence establishment.
Abstract:Image patch matching, which is the process of identifying corresponding patches across images, has been used as a subroutine for many computer vision and image processing tasks. State -of-the-art patch matching techniques take image patches as input to a convolutional neural network to extract the patch features and evaluate their similarity. Our aim in this paper is to improve on the state of the art patch matching techniques by observing the fact that a sparse-overcomplete representation of an image posses statistical properties of natural visual scenes which can be exploited for patch matching. We propose a new paradigm which encodes image patch details by encoding the patch and subsequently using this sparse representation as input to a neural network to compare the patches. As sparse coding is based on a generative model of natural image patches, it can represent the patch in terms of the fundamental visual components from which it has been composed of, leading to similar sparse codes for patches which are built from similar components. Once the sparse coded features are extracted, we employ a fully-connected neural network, which captures the non-linear relationships between features, for comparison. We have evaluated our approach using the Liberty and Notredame subsets of the popular UBC patch dataset and set a new benchmark outperforming all state-of-the-art patch matching techniques for these datasets.