Abstract:Received signal strength (RSS) information has seldom been incorporated in the direct position determination (DPD) method of passive radio emitter localization to date. Further, the common use of directional emitters modulates the RSS such that omnidirectional assumptions would dramatically decrease accuracy. This paper introduces a new DPD approach utilizing an RSS- enhanced adaptive beamforming method demonstrating on par or better than state-of-the-art performance at very low SNR for omnidirectional emitters. The technique is then applied to directional emitters taking the imposed RSS modulation into account using a beampattern library, significantly improving localization region confidence as compared to omnidirectional assumption approaches. This is the first approach to date in the open literature for localizing directional emitters.
Abstract:This paper addresses a critical preliminary step in radar signal processing: detecting the presence of a radar signal and robustly estimating its bandwidth. Existing methods which are largely statistical feature-based approaches face challenges in electronic warfare (EW) settings where prior information about signals is lacking. While alternate deep learning based methods focus on more challenging environments, they primarily formulate this as a binary classification problem. In this research, we propose a novel methodology that not only detects the presence of a signal, but also localises it in the time domain and estimates its operating frequency band at that point in time. To achieve robust estimation, we introduce a compound loss function that leverages complementary information from both time-domain and frequency-domain representations. By integrating these approaches, we aim to improve the efficiency and accuracy of radar signal detection and parameter estimation, reducing both unnecessary resource consumption and human effort in downstream tasks.