Abstract:Unmanned aerial vehicle-assisted disaster recovery missions have been promoted recently due to their reliability and flexibility. Machine learning algorithms running onboard significantly enhance the utility of UAVs by enabling real-time data processing and efficient decision-making, despite being in a resource-constrained environment. However, the limited bandwidth and intermittent connectivity make transmitting the outputs to ground stations challenging. This paper proposes a novel semantic extractor that can be adopted into any machine learning downstream task for identifying the critical data required for decision-making. The semantic extractor can be executed onboard which results in a reduction of data that needs to be transmitted to ground stations. We test the proposed architecture together with the semantic extractor on two publicly available datasets, FloodNet and RescueNet, for two downstream tasks: visual question answering and disaster damage level classification. Our experimental results demonstrate the proposed method maintains high accuracy across different downstream tasks while significantly reducing the volume of transmitted data, highlighting the effectiveness of our semantic extractor in capturing task-specific salient information.
Abstract:Early diagnosis of Autism Spectrum Disorder (ASD) is an effective and favorable step towards enhancing the health and well-being of children with ASD. Manual ASD diagnosis testing is labor-intensive, complex, and prone to human error due to several factors contaminating the results. This paper proposes a novel framework that exploits the laws of physics for ASD severity recognition. The proposed physics-informed neural network architecture encodes the behaviour of the subject extracted by observing a part of the skeleton-based motion trajectory in a higher dimensional latent space. Two decoders, namely physics-based and non-physics-based decoder, use this latent embedding and predict the future motion patterns. The physics branch leverages the laws of physics that apply to a skeleton sequence in the prediction process while the non-physics-based branch is optimised to minimise the difference between the predicted and actual motion of the subject. A classifier also leverages the same latent space embeddings to recognise the ASD severity. This dual generative objective explicitly forces the network to compare the actual behaviour of the subject with the general normal behaviour of children that are governed by the laws of physics, aiding the ASD recognition task. The proposed method attains state-of-the-art performance on multiple ASD diagnosis benchmarks. To illustrate the utility of the proposed framework beyond the task ASD diagnosis, we conduct a third experiment using a publicly available benchmark for the task of fall prediction and demonstrate the superiority of our model.
Abstract:We propose PseudoNeg-MAE, a novel self-supervised learning framework that enhances global feature representation of point cloud mask autoencoder by making them both discriminative and sensitive to transformations. Traditional contrastive learning methods focus on achieving invariance, which can lead to the loss of valuable transformation-related information. In contrast, PseudoNeg-MAE explicitly models the relationship between original and transformed data points using a parametric network COPE, which learns the localized displacements caused by transformations within the latent space. However, jointly training COPE with the MAE leads to undesirable trivial solutions where COPE outputs collapse to an identity. To address this, we introduce a novel loss function incorporating pseudo-negatives, which effectively penalizes these trivial invariant solutions and promotes transformation sensitivity in the embeddings. We validate PseudoNeg-MAE on shape classification and relative pose estimation tasks, where PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets under challenging evaluation protocols and demonstrates superior accuracy in estimating relative poses. These results show the effectiveness of PseudoNeg-MAE in learning discriminative and transformation-sensitive representations.
Abstract:Heatmaps have been instrumental in helping understand deep network decisions, and are a common approach for Explainable AI (XAI). While significant progress has been made in enhancing the informativeness and accessibility of heatmaps, heatmap analysis is typically very subjective and limited to domain experts. As such, developing automatic, scalable, and numerical analysis methods to make heatmap-based XAI more objective, end-user friendly, and cost-effective is vital. In addition, there is a need for comprehensive evaluation metrics to assess heatmap quality at a granular level.
Abstract:Aerial-ground person re-identification (Re-ID) presents unique challenges in computer vision, stemming from the distinct differences in viewpoints, poses, and resolutions between high-altitude aerial and ground-based cameras. Existing research predominantly focuses on ground-to-ground matching, with aerial matching less explored due to a dearth of comprehensive datasets. To address this, we introduce AG-ReID.v2, a dataset specifically designed for person Re-ID in mixed aerial and ground scenarios. This dataset comprises 100,502 images of 1,615 unique individuals, each annotated with matching IDs and 15 soft attribute labels. Data were collected from diverse perspectives using a UAV, stationary CCTV, and smart glasses-integrated camera, providing a rich variety of intra-identity variations. Additionally, we have developed an explainable attention network tailored for this dataset. This network features a three-stream architecture that efficiently processes pairwise image distances, emphasizes key top-down features, and adapts to variations in appearance due to altitude differences. Comparative evaluations demonstrate the superiority of our approach over existing baselines. We plan to release the dataset and algorithm source code publicly, aiming to advance research in this specialized field of computer vision. For access, please visit https://github.com/huynguyen792/AG-ReID.v2.
Abstract:Recent progress in semantic scene understanding has primarily been enabled by the availability of semantically annotated bi-modal (camera and lidar) datasets in urban environments. However, such annotated datasets are also needed for natural, unstructured environments to enable semantic perception for applications, including conservation, search and rescue, environment monitoring, and agricultural automation. Therefore, we introduce WildScenes, a bi-modal benchmark dataset consisting of multiple large-scale traversals in natural environments, including semantic annotations in high-resolution 2D images and dense 3D lidar point clouds, and accurate 6-DoF pose information. The data is (1) trajectory-centric with accurate localization and globally aligned point clouds, (2) calibrated and synchronized to support bi-modal inference, and (3) containing different natural environments over 6 months to support research on domain adaptation. Our 3D semantic labels are obtained via an efficient automated process that transfers the human-annotated 2D labels from multiple views into 3D point clouds, thus circumventing the need for expensive and time-consuming human annotation in 3D. We introduce benchmarks on 2D and 3D semantic segmentation and evaluate a variety of recent deep-learning techniques to demonstrate the challenges in semantic segmentation in natural environments. We propose train-val-test splits for standard benchmarks as well as domain adaptation benchmarks and utilize an automated split generation technique to ensure the balance of class label distributions. The data, evaluation scripts and pretrained models will be released upon acceptance at https://csiro-robotics.github.io/WildScenes.
Abstract:Hyperspectral images (HSIs) contain rich spectral and spatial information. Motivated by the success of transformers in the field of natural language processing and computer vision where they have shown the ability to learn long range dependencies within input data, recent research has focused on using transformers for HSIs. However, current state-of-the-art hyperspectral transformers only tokenize the input HSI sample along the spectral dimension, resulting in the under-utilization of spatial information. Moreover, transformers are known to be data-hungry and their performance relies heavily on large-scale pre-training, which is challenging due to limited annotated hyperspectral data. Therefore, the full potential of HSI transformers has not been fully realized. To overcome these limitations, we propose a novel factorized spectral-spatial transformer that incorporates factorized self-supervised pre-training procedures, leading to significant improvements in performance. The factorization of the inputs allows the spectral and spatial transformers to better capture the interactions within the hyperspectral data cubes. Inspired by masked image modeling pre-training, we also devise efficient masking strategies for pre-training each of the spectral and spatial transformers. We conduct experiments on three publicly available datasets for HSI classification task and demonstrate that our model achieves state-of-the-art performance in all three datasets. The code for our model will be made available at https://github.com/csiro-robotics/factoformer.
Abstract:Endoscopy plays a major role in identifying any underlying abnormalities within the gastrointestinal (GI) tract. There are multiple GI tract diseases that are life-threatening, such as precancerous lesions and other intestinal cancers. In the usual process, a diagnosis is made by a medical expert which can be prone to human errors and the accuracy of the test is also entirely dependent on the expert's level of experience. Deep learning, specifically Convolution Neural Networks (CNNs) which are designed to perform automatic feature learning without any prior feature engineering, has recently reported great benefits for GI endoscopy image analysis. Previous research has developed models that focus only on improving performance, as such, the majority of introduced models contain complex deep network architectures with a large number of parameters that require longer training times. However, there is a lack of focus on developing lightweight models which can run in low-resource environments, which are typically encountered in medical clinics. We investigate three KD-based learning frameworks, response-based, feature-based, and relation-based mechanisms, and introduce a novel multi-head attention-based feature fusion mechanism to support relation-based learning. Compared to the existing relation-based methods that follow simplistic aggregation techniques of multi-teacher response/feature-based knowledge, we adopt the multi-head attention technique to provide flexibility towards localising and transferring important details from each teacher to better guide the student. We perform extensive evaluations on two widely used public datasets, KVASIR-V2 and Hyper-KVASIR, and our experimental results signify the merits of our proposed relation-based framework in achieving an improved lightweight model (only 51.8k trainable parameters) that can run in a resource-limited environment.
Abstract:LiDAR place recognition approaches based on deep learning suffer a significant degradation in performance when there is a shift between the distribution of the training and testing datasets, with re-training often required to achieve top performance. However, obtaining accurate ground truth on new environments can be prohibitively expensive, especially in complex or GPS-deprived environments. To address this issue we propose GeoAdapt, which introduces a novel auxiliary classification head to generate pseudo-labels for re-training on unseen environments in a self-supervised manner. GeoAdapt uses geometric consistency as a prior to improve the robustness of our generated pseudo-labels against domain shift, improving the performance and reliability of our Test-Time Adaptation approach. Comprehensive experiments show that GeoAdapt significantly boosts place recognition performance across moderate to severe domain shifts, and is competitive with fully supervised test-time adaptation approaches. Our code will be available at https://github.com/csiro-robotics/GeoAdapt.
Abstract:The advent of high-resolution multispectral/hyperspectral sensors, LiDAR DSM (Digital Surface Model) information and many others has provided us with an unprecedented wealth of data for Earth Observation. Multimodal AI seeks to exploit those complementary data sources, particularly for complex tasks like semantic segmentation. While specialized architectures have been developed, they are highly complicated via significant effort in model design, and require considerable re-engineering whenever a new modality emerges. Recent trends in general-purpose multimodal networks have shown great potential to achieve state-of-the-art performance across multiple multimodal tasks with one unified architecture. In this work, we investigate the performance of PerceiverIO, one in the general-purpose multimodal family, in the remote sensing semantic segmentation domain. Our experiments reveal that this ostensibly universal network struggles with object scale variation in remote sensing images and fails to detect the presence of cars from a top-down view. To address these issues, even with extreme class imbalance issues, we propose a spatial and volumetric learning component. Specifically, we design a UNet-inspired module that employs 3D convolution to encode vital local information and learn cross-modal features simultaneously, while reducing network computational burden via the cross-attention mechanism of PerceiverIO. The effectiveness of the proposed component is validated through extensive experiments comparing it with other methods such as 2D convolution, and dual local module (\ie the combination of Conv2D 1x1 and Conv2D 3x3 inspired by UNetFormer). The proposed method achieves competitive results with specialized architectures like UNetFormer and SwinUNet, showing its potential to minimize network architecture engineering with a minimal compromise on the performance.