Abstract:Early diagnosis of Autism Spectrum Disorder (ASD) is an effective and favorable step towards enhancing the health and well-being of children with ASD. Manual ASD diagnosis testing is labor-intensive, complex, and prone to human error due to several factors contaminating the results. This paper proposes a novel framework that exploits the laws of physics for ASD severity recognition. The proposed physics-informed neural network architecture encodes the behaviour of the subject extracted by observing a part of the skeleton-based motion trajectory in a higher dimensional latent space. Two decoders, namely physics-based and non-physics-based decoder, use this latent embedding and predict the future motion patterns. The physics branch leverages the laws of physics that apply to a skeleton sequence in the prediction process while the non-physics-based branch is optimised to minimise the difference between the predicted and actual motion of the subject. A classifier also leverages the same latent space embeddings to recognise the ASD severity. This dual generative objective explicitly forces the network to compare the actual behaviour of the subject with the general normal behaviour of children that are governed by the laws of physics, aiding the ASD recognition task. The proposed method attains state-of-the-art performance on multiple ASD diagnosis benchmarks. To illustrate the utility of the proposed framework beyond the task ASD diagnosis, we conduct a third experiment using a publicly available benchmark for the task of fall prediction and demonstrate the superiority of our model.
Abstract:We propose PseudoNeg-MAE, a novel self-supervised learning framework that enhances global feature representation of point cloud mask autoencoder by making them both discriminative and sensitive to transformations. Traditional contrastive learning methods focus on achieving invariance, which can lead to the loss of valuable transformation-related information. In contrast, PseudoNeg-MAE explicitly models the relationship between original and transformed data points using a parametric network COPE, which learns the localized displacements caused by transformations within the latent space. However, jointly training COPE with the MAE leads to undesirable trivial solutions where COPE outputs collapse to an identity. To address this, we introduce a novel loss function incorporating pseudo-negatives, which effectively penalizes these trivial invariant solutions and promotes transformation sensitivity in the embeddings. We validate PseudoNeg-MAE on shape classification and relative pose estimation tasks, where PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets under challenging evaluation protocols and demonstrates superior accuracy in estimating relative poses. These results show the effectiveness of PseudoNeg-MAE in learning discriminative and transformation-sensitive representations.
Abstract:Hyperspectral images (HSIs) contain rich spectral and spatial information. Motivated by the success of transformers in the field of natural language processing and computer vision where they have shown the ability to learn long range dependencies within input data, recent research has focused on using transformers for HSIs. However, current state-of-the-art hyperspectral transformers only tokenize the input HSI sample along the spectral dimension, resulting in the under-utilization of spatial information. Moreover, transformers are known to be data-hungry and their performance relies heavily on large-scale pre-training, which is challenging due to limited annotated hyperspectral data. Therefore, the full potential of HSI transformers has not been fully realized. To overcome these limitations, we propose a novel factorized spectral-spatial transformer that incorporates factorized self-supervised pre-training procedures, leading to significant improvements in performance. The factorization of the inputs allows the spectral and spatial transformers to better capture the interactions within the hyperspectral data cubes. Inspired by masked image modeling pre-training, we also devise efficient masking strategies for pre-training each of the spectral and spatial transformers. We conduct experiments on three publicly available datasets for HSI classification task and demonstrate that our model achieves state-of-the-art performance in all three datasets. The code for our model will be made available at https://github.com/csiro-robotics/factoformer.
Abstract:Humans exhibit complex motions that vary depending on the task that they are performing, the interactions they engage in, as well as subject-specific preferences. Therefore, forecasting future poses based on the history of the previous motions is a challenging task. This paper presents an innovative auxiliary-memory-powered deep neural network framework for the improved modelling of historical knowledge. Specifically, we disentangle subject-specific, task-specific, and other auxiliary information from the observed pose sequences and utilise these factorised features to query the memory. A novel Multi-Head knowledge retrieval scheme leverages these factorised feature embeddings to perform multiple querying operations over the historical observations captured within the auxiliary memory. Moreover, our proposed dynamic masking strategy makes this feature disentanglement process dynamic. Two novel loss functions are introduced to encourage diversity within the auxiliary memory while ensuring the stability of the memory contents, such that it can locate and store salient information that can aid the long-term prediction of future motion, irrespective of data imbalances or the diversity of the input data distribution. With extensive experiments conducted on two public benchmarks, Human3.6M and CMU-Mocap, we demonstrate that these design choices collectively allow the proposed approach to outperform the current state-of-the-art methods by significant margins: $>$ 17\% on the Human3.6M dataset and $>$ 9\% on the CMU-Mocap dataset.
Abstract:Modern automated surveillance techniques are heavily reliant on deep learning methods. Despite the superior performance, these learning systems are inherently vulnerable to adversarial attacks - maliciously crafted inputs that are designed to mislead, or trick, models into making incorrect predictions. An adversary can physically change their appearance by wearing adversarial t-shirts, glasses, or hats or by specific behavior, to potentially avoid various forms of detection, tracking and recognition of surveillance systems; and obtain unauthorized access to secure properties and assets. This poses a severe threat to the security and safety of modern surveillance systems. This paper reviews recent attempts and findings in learning and designing physical adversarial attacks for surveillance applications. In particular, we propose a framework to analyze physical adversarial attacks and provide a comprehensive survey of physical adversarial attacks on four key surveillance tasks: detection, identification, tracking, and action recognition under this framework. Furthermore, we review and analyze strategies to defend against the physical adversarial attacks and the methods for evaluating the strengths of the defense. The insights in this paper present an important step in building resilience within surveillance systems to physical adversarial attacks.
Abstract:Person re-identification (re-id) is a pivotal task within an intelligent surveillance pipeline and there exist numerous re-id frameworks that achieve satisfactory performance in challenging benchmarks. However, these systems struggle to generate acceptable results when there are significant differences between the camera views, illumination conditions, or occlusions. This result can be attributed to the deficiency that exists within many recently proposed re-id pipelines where they are predominately driven by appearance-based features and little attention is paid to other auxiliary information that could aid the re-id. In this paper, we systematically review the current State-Of-The-Art (SOTA) methods in both uni-modal and multimodal person re-id. Extending beyond a conceptual framework, we illustrate how the existing SOTA methods can be extended to support these additional auxiliary information and quantitatively evaluate the utility of such auxiliary feature information, ranging from logos printed on the objects carried by the subject or printed on the clothes worn by the subject, through to his or her behavioural trajectories. To the best of our knowledge, this is the first work that explores the fusion of multiple information to generate a more discriminant person descriptor and the principal aim of this paper is to provide a thorough theoretical analysis regarding the implementation of such a framework. In addition, using model interpretation techniques, we validate the contributions from different combinations of the auxiliary information versus the original features that the SOTA person re-id models extract. We outline the limitations of the proposed approaches and propose future research directions that could be pursued to advance the area of multi-modal person re-id.
Abstract:With tremendous advancements in low-power embedded computing devices and remote sensing instruments, the traditional satellite image processing pipeline which includes an expensive data transfer step prior to processing data on the ground is being replaced by on-board processing of captured data. This paradigm shift enables critical and time-sensitive analytic intelligence to be acquired in a timely manner on-board the satellite itself. However, at present, the on-board processing of multi-spectral satellite images is limited to classification and segmentation tasks. Extending this processing to its next logical level, in this paper we propose a lightweight pipeline for on-board panoptic segmentation of multi-spectral satellite images. Panoptic segmentation offers major economic and environmental insights, ranging from yield estimation from agricultural lands to intelligence for complex military applications. Nevertheless, the on-board intelligence extraction raises several challenges due to the loss of temporal observations and the need to generate predictions from a single image sample. To address this challenge, we propose a multimodal teacher network based on a cross-modality attention-based fusion strategy to improve the segmentation accuracy by exploiting data from multiple modes. We also propose an online knowledge distillation framework to transfer the knowledge learned by this multi-modal teacher network to a uni-modal student which receives only a single frame input, and is more appropriate for an on-board environment. We benchmark our approach against existing state-of-the-art panoptic segmentation models using the PASTIS multi-spectral panoptic segmentation dataset considering an on-board processing setting. Our evaluations demonstrate a substantial increase in accuracy metrics compared to the existing state-of-the-art models.
Abstract:This paper presents a novel lightweight COVID-19 diagnosis framework using CT scans. Our system utilises a novel two-stage approach to generate robust and efficient diagnoses across heterogeneous patient level inputs. We use a powerful backbone network as a feature extractor to capture discriminative slice-level features. These features are aggregated by a lightweight network to obtain a patient level diagnosis. The aggregation network is carefully designed to have a small number of trainable parameters while also possessing sufficient capacity to generalise to diverse variations within different CT volumes and to adapt to noise introduced during the data acquisition. We achieve a significant performance increase over the baselines when benchmarked on the SPGC COVID-19 Radiomics Dataset, despite having only 2.5 million trainable parameters and requiring only 0.623 seconds on average to process a single patient's CT volume using an Nvidia-GeForce RTX 2080 GPU.
Abstract:This paper proposes a novel framework for lung sound event detection, segmenting continuous lung sound recordings into discrete events and performing recognition on each event. Exploiting the lightweight nature of Temporal Convolution Networks (TCNs) and their superior results compared to their recurrent counterparts, we propose a lightweight, yet robust, and completely interpretable framework for lung sound event detection. We propose the use of a multi-branch TCN architecture and exploit a novel fusion strategy to combine the resultant features from these branches. This not only allows the network to retain the most salient information across different temporal granularities and disregards irrelevant information, but also allows our network to process recordings of arbitrary length. Results: The proposed method is evaluated on multiple public and in-house benchmarks of irregular and noisy recordings of the respiratory auscultation process for the identification of numerous auscultation events including inhalation, exhalation, crackles, wheeze, stridor, and rhonchi. We exceed the state-of-the-art results in all evaluations. Furthermore, we empirically analyse the effect of the proposed multi-branch TCN architecture and the feature fusion strategy and provide quantitative and qualitative evaluations to illustrate their efficiency. Moreover, we provide an end-to-end model interpretation pipeline that interprets the operations of all the components of the proposed framework. Our analysis of different feature fusion strategies shows that the proposed feature concatenation method leads to better suppression of non-informative features, which drastically reduces the classifier overhead resulting in a robust lightweight network.The lightweight nature of our model allows it to be deployed in end-user devices such as smartphones, and it has the ability to generate predictions in real-time.
Abstract:Machine learning-based medical anomaly detection is an important problem that has been extensively studied. Numerous approaches have been proposed across various medical application domains and we observe several similarities across these distinct applications. Despite this comparability, we observe a lack of structured organisation of these diverse research applications such that their advantages and limitations can be studied. The principal aim of this survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection. In particular, we contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms. Furthermore, we provide a comprehensive overview of deep model interpretation strategies that can be used to interpret model decisions. In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.