Abstract:This article investigates a control system within the context of six-generation wireless networks. The control performance optimization confronts the technical challenges that arise from the intricate interactions between communication and control sub-systems, asking for a co-design. Accounting for the system dynamics, we formulate the sequential co-design decision-makings of communication and control over the discrete time horizon as a Markov decision process, for which a practical offline learning framework is proposed. Our proposed framework integrates large language models into the elements of reinforcement learning. We present a case study on the age of semantics-aware communication and control co-design to showcase the potentials from our proposed learning framework. Furthermore, we discuss the open issues remaining to make our proposed offline learning framework feasible for real-world implementations, and highlight the research directions for future explorations.
Abstract:Dynamic Graph Neural Network (DGNN) has shown a strong capability of learning dynamic graphs by exploiting both spatial and temporal features. Although DGNN has recently received considerable attention by AI community and various DGNN models have been proposed, building a distributed system for efficient DGNN training is still challenging. It has been well recognized that how to partition the dynamic graph and assign workloads to multiple GPUs plays a critical role in training acceleration. Existing works partition a dynamic graph into snapshots or temporal sequences, which only work well when the graph has uniform spatio-temporal structures. However, dynamic graphs in practice are not uniformly structured, with some snapshots being very dense while others are sparse. To address this issue, we propose DGC, a distributed DGNN training system that achieves a 1.25x - 7.52x speedup over the state-of-the-art in our testbed. DGC's success stems from a new graph partitioning method that partitions dynamic graphs into chunks, which are essentially subgraphs with modest training workloads and few inter connections. This partitioning algorithm is based on graph coarsening, which can run very fast on large graphs. In addition, DGC has a highly efficient run-time, powered by the proposed chunk fusion and adaptive stale aggregation techniques. Extensive experimental results on 3 typical DGNN models and 4 popular dynamic graph datasets are presented to show the effectiveness of DGC.
Abstract:This paper studies an multi-cluster over-the-air computation (AirComp) system, where an intelligent reflecting surface (IRS) assists the signal transmission from devices to an access point (AP). The clusters are activated to compute heterogeneous functions in a time-division manner. Specifically, two types of IRS beamforming (BF) schemes are proposed to reveal the performancecost tradeoff. One is the cluster-adaptive BF scheme, where each BF pattern is dedicated to one cluster, and the other is the dynamic BF scheme, which is applied to any number of IRS BF patterns. By deeply exploiting their inherent properties, both generic and lowcomplexity algorithms are proposed in which the IRS BF patterns, time and power resource allocation are jointly optimized. Numerical results show that IRS can significantly enhance the function computation performance, and demonstrate that the dynamic IRS BF scheme with half of the total IRS BF patterns can achieve near-optimal performance which can be deemed as a cost-efficient approach for IRS-aided multi-cluster AirComp systems.
Abstract:In the paper, we investigate the coordination process of sensing and computation offloading in a reconfigurable intelligent surface (RIS)-aided base station (BS)-centric symbiotic radio (SR) systems. Specifically, the Internet-of-Things (IoT) devices first sense data from environment and then tackle the data locally or offload the data to BS for remote computing, while RISs are leveraged to enhance the quality of blocked channels and also act as IoT devices to transmit its sensed data. To explore the mechanism of cooperative sensing and computation offloading in this system, we aim at maximizing the total completed sensed bits of all users and RISs by jointly optimizing the time allocation parameter, the passive beamforming at each RIS, the transmit beamforming at BS, and the energy partition parameters for all users subject to the size of sensed data, energy supply and given time cycle. The formulated nonconvex problem is tightly coupled by the time allocation parameter and involves the mathematical expectations, which cannot be solved straightly. We use Monte Carlo and fractional programming methods to transform the nonconvex objective function and then propose an alternating optimization-based algorithm to find an approximate solution with guaranteed convergence. Numerical results show that the RIS-aided SR system outperforms other benchmarks in sensing. Furthermore, with the aid of RIS, the channel and system performance can be significantly improved.
Abstract:This paper considers intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) in a multi-user multiple-input single-output (MISO) interference channel (IFC), where multiple transmitters (Txs) serve their corresponding receivers (Rxs) in a shared spectrum with the aid of IRSs. Our goal is to maximize the sum rate of the Rxs by jointly optimizing the transmit covariance matrices at the Txs, the phase shifts at the IRSs, and the resource allocation subject to the individual energy harvesting (EH) constraints at the Rxs. Towards this goal and based on the well-known power splitting (PS) and time switching (TS) receiver structures, we consider three practical transmission schemes, namely the IRS-aided hybrid TS-PS scheme, the IRS-aided time-division multiple access (TDMA) scheme, and the IRS-aided TDMA-D scheme. The latter two schemes differ in whether the Txs employ deterministic energy signals known to all the Rxs. Despite the non-convexity of the three optimization problems corresponding to the three transmission schemes, we develop computationally efficient algorithms to address them suboptimally, respectively, by capitalizing on the techniques of alternating optimization (AO) and successive convex approximation (SCA). Moreover, we conceive feasibility checking methods for these problems, based on which the initial points for the proposed algorithms are constructed. Simulation results demonstrate that our proposed IRS-aided schemes significantly outperform their counterparts without IRSs in terms of sum rate and maximum EH requirements that can be satisfied under various setups. In addition, the IRS-aided hybrid TS-PS scheme generally achieves the best sum rate performance among the three proposed IRS-aided schemes, and if not, increasing the number of IRS elements can always accomplish it.
Abstract:The age of information metric fails to correctly describe the intrinsic semantics of a status update. In an intelligent reflecting surface-aided cooperative relay communication system, we propose the age of semantics (AoS) for measuring semantics freshness of the status updates. Specifically, we focus on the status updating from a source node (SN) to the destination, which is formulated as a Markov decision process (MDP). The objective of the SN is to maximize the expected satisfaction of AoS and energy consumption under the maximum transmit power constraint. To seek the optimal control policy, we first derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework. However, implementing the online DAC in practice poses the key challenge in infinitely repeated interactions between the SN and the system, which can be dangerous particularly during the exploration. We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset without any further interactions with the system. Numerical experiments verify the theoretical results and show that our offline DAC scheme significantly outperforms the online DAC scheme and the most representative baselines in terms of mean utility, demonstrating strong robustness to dataset quality.
Abstract:Mobile edge computing (MEC) deployment in a multi-robot cooperation (MRC) system is an effective way to accomplish the tasks in terms of energy consumption and implementation latency. However, the computation and communication resources need to be considered jointly to fully exploit the advantages brought by the MEC technology. In this paper, the scenario where multi robots cooperate to accomplish the time-critical tasks is studied, where an intelligent master robot (MR) acts as an edge server to provide services to multiple slave robots (SRs) and the SRs are responsible for the environment sensing and data collection. To save energy and prolong the function time of the system, two schemes are proposed to optimize the computation and communication resources, respectively. In the first scheme, the energy consumption of SRs is minimized and balanced while guaranteeing that the tasks are accomplished under a time constraint. In the second scheme, not only the energy consumption, but also the remaining energies of the SRs are considered to enhance the robustness of the system. Through the analysis and numerical simulations, we demonstrate that even though the first policy may guarantee the minimization on the total SRs' energy consumption, the function time of MRC system by the second scheme is longer than that by the first one.
Abstract:Federated learning has attracted much research attention due to its privacy protection in distributed machine learning. However, existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle graph data that are popular in many applications. Graph Convolutional Network (GCN) has been proposed as one of the most promising techniques for graph learning, but its federated setting has been seldom explored. In this paper, we propose FedGraph for federated graph learning among multiple computing clients, each of which holds a subgraph. FedGraph provides strong graph learning capability across clients by addressing two unique challenges. First, traditional GCN training needs feature data sharing among clients, leading to risk of privacy leakage. FedGraph solves this issue using a novel cross-client convolution operation. The second challenge is high GCN training overhead incurred by large graph size. We propose an intelligent graph sampling algorithm based on deep reinforcement learning, which can automatically converge to the optimal sampling policies that balance training speed and accuracy. We implement FedGraph based on PyTorch and deploy it on a testbed for performance evaluation. The experimental results of four popular datasets demonstrate that FedGraph significantly outperforms existing work by enabling faster convergence to higher accuracy.
Abstract:This paper studies the problem of information freshness-aware task offloading in an air-ground integrated multi-access edge computing system, which is deployed by an infrastructure provider (InP). A third-party real-time application service provider provides computing services to the subscribed mobile users (MUs) with the limited communication and computation resources from the InP based on a long-term business agreement. Due to the dynamic characteristics, the interactions among the MUs are modelled by a non-cooperative stochastic game, in which the control policies are coupled and each MU aims to selfishly maximize its own expected long-term payoff. To address the Nash equilibrium solutions, we propose that each MU behaves in accordance with the local system states and conjectures, based on which the stochastic game is transformed into a single-agent Markov decision process. Moreover, we derive a novel online deep reinforcement learning (RL) scheme that adopts two separate double deep Q-networks for each MU to approximate the Q-factor and the post-decision Q-factor. Using the proposed deep RL scheme, each MU in the system is able to make decisions without a priori statistical knowledge of dynamics. Numerical experiments examine the potentials of the proposed scheme in balancing the age of information and the energy consumption.
Abstract:Facing the trend of merging wireless communications and multi-access edge computing (MEC), this article studies computation offloading in the beyond fifth-generation networks. To address the technical challenges originating from the uncertainties and the sharing of limited resource in an MEC system, we formulate the computation offloading problem as a multi-agent Markov decision process, for which a distributed learning framework is proposed. We present a case study on resource orchestration in computation offloading to showcase the potentials of an online distributed reinforcement learning algorithm developed under the proposed framework. Experimental results demonstrate that our learning algorithm outperforms the benchmark resource orchestration algorithms. Furthermore, we outline the research directions worth in-depth investigation to minimize the time cost, which is one of the main practical issues that prevent the implementation of the proposed distributed learning framework.