The age of information metric fails to correctly describe the intrinsic semantics of a status update. In an intelligent reflecting surface-aided cooperative relay communication system, we propose the age of semantics (AoS) for measuring semantics freshness of the status updates. Specifically, we focus on the status updating from a source node (SN) to the destination, which is formulated as a Markov decision process (MDP). The objective of the SN is to maximize the expected satisfaction of AoS and energy consumption under the maximum transmit power constraint. To seek the optimal control policy, we first derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework. However, implementing the online DAC in practice poses the key challenge in infinitely repeated interactions between the SN and the system, which can be dangerous particularly during the exploration. We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset without any further interactions with the system. Numerical experiments verify the theoretical results and show that our offline DAC scheme significantly outperforms the online DAC scheme and the most representative baselines in terms of mean utility, demonstrating strong robustness to dataset quality.