ResNet (Residual Neural Network) is a deep-learning architecture that uses residual connections to enable training of very deep neural networks.
Self-supervised learning (SSL) methods based on Siamese networks learn visual representations by aligning different views of the same image. The multi-crop strategy, which incorporates small local crops to global ones, enhances many SSL frameworks but causes instability in predictor-based architectures such as BYOL, SimSiam, and MoCo v3. We trace this failure to the shared predictor used across all views and demonstrate that assigning a separate predictor to each view type stabilizes multi-crop training, resulting in significant performance gains. Extending this idea, we treat each spatial transformation as a distinct alignment task and add cutout views, where part of the image is masked before encoding. This yields a simple multi-task formulation of asymmetric Siamese SSL that combines global, local, and masked views into a single framework. The approach is stable, generally applicable across backbones, and consistently improves the performance of ResNet and ViT models on ImageNet.
Prenatal psychological stress affects 15-25% of pregnancies and increases risks of preterm birth, low birth weight, and adverse neurodevelopmental outcomes. Current screening relies on subjective questionnaires (PSS-10), limiting continuous monitoring. We developed deep learning models for stress detection from electrocardiography (ECG) using the FELICITy 1 cohort (151 pregnant women, 32-38 weeks gestation). A ResNet-34 encoder was pretrained via SimCLR contrastive learning on 40,692 ECG segments per subject. Multi-layer feature extraction enabled binary classification and continuous PSS prediction across maternal (mECG), fetal (fECG), and abdominal ECG (aECG). External validation used the FELICITy 2 RCT (28 subjects, different ECG device, yoga intervention vs. control). On FELICITy 1 (5-fold CV): mECG 98.6% accuracy (R2=0.88, MAE=1.90), fECG 99.8% (R2=0.95, MAE=1.19), aECG 95.5% (R2=0.75, MAE=2.80). External validation on FELICITy 2: mECG 77.3% accuracy (R2=0.62, MAE=3.54, AUC=0.826), aECG 63.6% (R2=0.29, AUC=0.705). Signal quality-based channel selection outperformed all-channel averaging (+12% R2 improvement). Mixed-effects models detected a significant intervention response (p=0.041). Self-supervised deep learning on pregnancy ECG enables accurate, objective stress assessment, with multi-layer feature extraction substantially outperforming single embedding approaches.
One of the chronic problems of deep-learning models is shortcut learning. In a case where the majority of training data are dominated by a certain feature, neural networks prefer to learn such a feature even if the feature is not generalizable outside the training set. Based on the framework of Neural Tangent Kernel (NTK), we analyzed the case of linear neural networks to derive some important properties of shortcut learning. We defined a feature of a neural network as an eigenfunction of NTK. Then, we found that shortcut features correspond to features with larger eigenvalues when the shortcuts stem from the imbalanced number of samples in the clustered distribution. We also showed that the features with larger eigenvalues still have a large influence on the neural network output even after training, due to data variances in the clusters. Such a preference for certain features remains even when a margin of a neural network output is controlled, which shows that the max-margin bias is not the only major reason for shortcut learning. These properties of linear neural networks are empirically extended for more complex neural networks as a two-layer fully-connected ReLU network and a ResNet-18.
Out-of-distribution (OOD) detection is critical for the safe deployment of deep neural networks. State-of-the-art post-hoc methods typically derive OOD scores from the output logits or penultimate feature vector obtained via global average pooling (GAP). We contend that this exclusive reliance on the logit or feature vector discards a rich, complementary signal: the raw channel-wise statistics of the pre-pooling feature map lost in GAP. In this paper, we introduce Catalyst, a post-hoc framework that exploits these under-explored signals. Catalyst computes an input-dependent scaling factor ($γ$) on-the-fly from these raw statistics (e.g., mean, standard deviation, and maximum activation). This $γ$ is then fused with the existing baseline score, multiplicatively modulating it -- an ``elastic scaling'' -- to push the ID and OOD distributions further apart. We demonstrate Catalyst is a generalizable framework: it seamlessly integrates with logit-based methods (e.g., Energy, ReAct, SCALE) and also provides a significant boost to distance-based detectors like KNN. As a result, Catalyst achieves substantial and consistent performance gains, reducing the average False Positive Rate by 32.87 on CIFAR-10 (ResNet-18), 27.94% on CIFAR-100 (ResNet-18), and 22.25% on ImageNet (ResNet-50). Our results highlight the untapped potential of pre-pooling statistics and demonstrate that Catalyst is complementary to existing OOD detection approaches.
The Sterile Processing and Distribution (SPD) department is responsible for cleaning, disinfecting, inspecting, and assembling surgical instruments between surgeries. Manual inspection and preparation of instrument trays is a time-consuming, error-prone task, often prone to contamination and instrument breakage. In this work, we present a fully automated robotic system that sorts and structurally packs surgical instruments into sterile trays, focusing on automation of the SPD assembly stage. A custom dataset comprising 31 surgical instruments and 6,975 annotated images was collected to train a hybrid perception pipeline using YOLO12 for detection and a cascaded ResNet-based model for fine-grained classification. The system integrates a calibrated vision module, a 6-DOF Staubli TX2-60L robotic arm with a custom dual electromagnetic gripper, and a rule-based packing algorithm that reduces instrument collisions during transport. The packing framework uses 3D printed dividers and holders to physically isolate instruments, reducing collision and friction during transport. Experimental evaluations show high perception accuracy and statistically significant reduction in tool-to-tool collisions compared to human-assembled trays. This work serves as the scalable first step toward automating SPD workflows, improving safety, and consistency of surgical preparation while reducing SPD processing times.
Visual robustness and neural alignment remain critical challenges in developing artificial agents that can match biological vision systems. We present the winning approaches from Team HCMUS_TheFangs for both tracks of the NeurIPS 2025 Mouse vs. AI: Robust Visual Foraging Competition. For Track 1 (Visual Robustness), we demonstrate that architectural simplicity combined with targeted components yields superior generalization, achieving 95.4% final score with a lightweight two-layer CNN enhanced by Gated Linear Units and observation normalization. For Track 2 (Neural Alignment), we develop a deep ResNet-like architecture with 16 convolutional layers and GLU-based gating that achieves top-1 neural prediction performance with 17.8 million parameters. Our systematic analysis of ten model checkpoints trained between 60K to 1.14M steps reveals that training duration exhibits a non-monotonic relationship with performance, with optimal results achieved around 200K steps. Through comprehensive ablation studies and failure case analysis, we provide insights into why simpler architectures excel at visual robustness while deeper models with increased capacity achieve better neural alignment. Our results challenge conventional assumptions about model complexity in visuomotor learning and offer practical guidance for developing robust, biologically-inspired visual agents.
How close are neural networks to the best they could possibly do? Standard benchmarks cannot answer this because they lack access to the true posterior p(y|x). We use class-conditional normalizing flows as oracles that make exact posteriors tractable on realistic images (AFHQ, ImageNet). This enables five lines of investigation. Scaling laws: Prediction error decomposes into irreducible aleatoric uncertainty and reducible epistemic error; the epistemic component follows a power law in dataset size, continuing to shrink even when total loss plateaus. Limits of learning: The aleatoric floor is exactly measurable, and architectures differ markedly in how they approach it: ResNets exhibit clean power-law scaling while Vision Transformers stall in low-data regimes. Soft labels: Oracle posteriors contain learnable structure beyond class labels: training with exact posteriors outperforms hard labels and yields near-perfect calibration. Distribution shift: The oracle computes exact KL divergence of controlled perturbations, revealing that shift type matters more than shift magnitude: class imbalance barely affects accuracy at divergence values where input noise causes catastrophic degradation. Active learning: Exact epistemic uncertainty distinguishes genuinely informative samples from inherently ambiguous ones, improving sample efficiency. Our framework reveals that standard metrics hide ongoing learning, mask architectural differences, and cannot diagnose the nature of distribution shift.
We investigate progressive freezing as an alternative to straight-through estimators (STE) for training binary networks from scratch. Under controlled training conditions, we find that while global progressive freezing works for binary-weight networks, it fails for full binary neural networks due to activation-induced gradient blockades. We introduce StoMPP (Stochastic Masked Partial Progressive Binarization), which uses layerwise stochastic masking to progressively replace differentiable clipped weights/activations with hard binary step functions, while only backpropagating through the unfrozen (clipped) subset (i.e., no straight-through estimator). Under a matched minimal training recipe, StoMPP improves accuracy over a BinaryConnect-style STE baseline, with gains that increase with depth (e.g., for ResNet-50 BNN: +18.0 on CIFAR-10, +13.5 on CIFAR-100, and +3.8 on ImageNet; for ResNet-18: +3.1, +4.7, and +1.3). For binary-weight networks, StoMPP achieves 91.2\% accuracy on CIFAR-10 and 69.5\% on CIFAR-100 with ResNet-50. We analyze training dynamics under progressive freezing, revealing non-monotonic convergence and improved depth scaling under binarization constraints.
Detecting out-of-distribution (OOD) inputs is a critical safeguard for deploying machine learning models in the real world. However, most post-hoc detection methods operate on penultimate feature representations derived from global average pooling (GAP) -- a lossy operation that discards valuable distributional statistics from activation maps prior to global average pooling. We contend that these overlooked statistics, particularly channel-wise variance and dominant (maximum) activations, are highly discriminative for OOD detection. We introduce DAVIS, a simple and broadly applicable post-hoc technique that enriches feature vectors by incorporating these crucial statistics, directly addressing the information loss from GAP. Extensive evaluations show DAVIS sets a new benchmark across diverse architectures, including ResNet, DenseNet, and EfficientNet. It achieves significant reductions in the false positive rate (FPR95), with improvements of 48.26\% on CIFAR-10 using ResNet-18, 38.13\% on CIFAR-100 using ResNet-34, and 26.83\% on ImageNet-1k benchmarks using MobileNet-v2. Our analysis reveals the underlying mechanism for this improvement, providing a principled basis for moving beyond the mean in OOD detection.
Rating the accuracy of captions in describing images is time-consuming and subjective for humans. In contrast, it is often easier for people to compare two captions and decide which one better matches a given image. In this work, we propose a machine learning framework that models such comparative judgments instead of direct ratings. The model can then be applied to rank unseen image-caption pairs in the same way as a regression model trained on direct ratings. Using the VICR dataset, we extract visual features with ResNet-50 and text features with MiniLM, then train both a regression model and a comparative learning model. While the regression model achieves better performance (Pearson's $ρ$: 0.7609 and Spearman's $r_s$: 0.7089), the comparative learning model steadily improves with more data and approaches the regression baseline. In addition, a small-scale human evaluation study comparing absolute rating, pairwise comparison, and same-image comparison shows that comparative annotation yields faster results and has greater agreement among human annotators. These results suggest that comparative learning can effectively model human preferences while significantly reducing the cost of human annotations.