What is Resnet? ResNet (Residual Neural Network) is a deep-learning architecture that uses residual connections to enable training of very deep neural networks.
Papers and Code
Apr 21, 2025
Abstract:This study demonstrates the capabilities of several methods for analyzing the sensitivity of neural networks to perturbations of the input data and interpreting their underlying mechanisms. The investigated approaches include the Sobol global sensitivity analysis, the local sensitivity method for input pixel perturbations and the activation maximization technique. As examples, in this study we consider a small feedforward neural network for analyzing an open tabular dataset of clinical diabetes data, as well as two classical convolutional architectures, VGG-16 and ResNet-18, which are widely used in image processing and classification. Utilization of the global sensitivity analysis allows us to identify the leading input parameters of the chosen tiny neural network and reduce their number without significant loss of the accuracy. As far as global sensitivity analysis is not applicable to larger models we try the local sensitivity analysis and activation maximization method in application to the convolutional neural networks. These methods show interesting patterns for the convolutional models solving the image classification problem. All in all, we compare the results of the activation maximization method with popular Grad-CAM technique in the context of ultrasound data analysis.
* 11 pages, 16 figures, 32 references
Via

Apr 21, 2025
Abstract:Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
Via

Apr 20, 2025
Abstract:Large Language Models (LLMs) have transformed natural language processing (NLP) tasks, but they suffer from hallucination, generating plausible yet factually incorrect content. This issue extends to Video-Language Models (VideoLLMs), where textual descriptions may inaccurately represent visual content, resulting in multi-modal hallucinations. In this paper, we address hallucination in ResNetVLLM, a video-language model combining ResNet visual encoders with LLMs. We introduce a two-step protocol: (1) a faithfulness detection strategy that uses a modified Lynx model to assess semantic alignment between generated captions and ground-truth video references, and (2) a hallucination mitigation strategy using Retrieval-Augmented Generation (RAG) with an ad-hoc knowledge base dynamically constructed during inference. Our enhanced model, ResNetVLLM-2, reduces multi-modal hallucinations by cross-verifying generated content against external knowledge, improving factual consistency. Evaluation on the ActivityNet-QA benchmark demonstrates a substantial accuracy increase from 54.8% to 65.3%, highlighting the effectiveness of our hallucination detection and mitigation strategies in enhancing video-language model reliability.
Via

Apr 20, 2025
Abstract:In this paper, we introduce ResNetVLLM (ResNet Vision LLM), a novel cross-modal framework for zero-shot video understanding that integrates a ResNet-based visual encoder with a Large Language Model (LLM. ResNetVLLM addresses the challenges associated with zero-shot video models by avoiding reliance on pre-trained video understanding models and instead employing a non-pretrained ResNet to extract visual features. This design ensures the model learns visual and semantic representations within a unified architecture, enhancing its ability to generate accurate and contextually relevant textual descriptions from video inputs. Our experimental results demonstrate that ResNetVLLM achieves state-of-the-art performance in zero-shot video understanding (ZSVU) on several benchmarks, including MSRVTT-QA, MSVD-QA, TGIF-QA FrameQA, and ActivityNet-QA.
Via

Apr 18, 2025
Abstract:Machine unlearning poses the challenge of ``how to eliminate the influence of specific data from a pretrained model'' in regard to privacy concerns. While prior research on approximated unlearning has demonstrated accuracy and efficiency in time complexity, we claim that it falls short of achieving exact unlearning, and we are the first to focus on fairness and robustness in machine unlearning algorithms. Our study presents fairness Conjectures for a well-trained model, based on the variance-bias trade-off characteristic, and considers their relevance to robustness. Our Conjectures are supported by experiments conducted on the two most widely used model architectures, ResNet and ViT, demonstrating the correlation between fairness and robustness: \textit{the higher fairness-gap is, the more the model is sensitive and vulnerable}. In addition, our experiments demonstrate the vulnerability of current state-of-the-art approximated unlearning algorithms to adversarial attacks, where their unlearned models suffer a significant drop in accuracy compared to the exact-unlearned models. We claim that our fairness-gap measurement and robustness metric should be used to evaluate the unlearning algorithm. Furthermore, we demonstrate that unlearning in the intermediate and last layers is sufficient and cost-effective for time and memory complexity.
* 5 pages
Via

Apr 16, 2025
Abstract:This study introduces ResNet-GLUSE, a lightweight ResNet variant enhanced with Gated Linear Unit-enhanced Squeeze-and-Excitation (GLUSE), an adaptive channel-wise attention mechanism. By integrating dynamic gating into the traditional SE framework, GLUSE improves feature recalibration while maintaining computational efficiency. Experiments on EuroSAT and PatternNet datasets confirm its effectiveness, achieving exceeding \textbf{94\% and 98\% accuracy}, respectively. While \textbf{MobileViT achieves 99\% accuracy}, ResNet-GLUSE offers \textbf{33x fewer parameters, 27x fewer FLOPs, 33x smaller model size (MB), $\approx$6x lower power consumption (W), and $\approx$3x faster inference time (s)}, making it significantly more efficient for onboard satellite deployment. Furthermore, due to its simplicity, ResNet-GLUSE can be easily mimicked for \textbf{neuromorphic computing}, enabling ultra-low power inference at just \textbf{852.30 mW} on Akida Brainchip. This balance between high accuracy and ultra-low resource consumption establishes ResNet-GLUSE as a practical solution for real-time Earth Observation (EO) tasks. Reproducible codes are available in our shared repository.
* Under review. arXiv admin note: text overlap with arXiv:2411.00209
Via

Apr 15, 2025
Abstract:This paper demonstrates that in classification problems, fully connected neural networks (FCNs) and residual neural networks (ResNets) cannot be approximated by kernel logistic regression based on the Neural Tangent Kernel (NTK) under overtraining (i.e., when training time approaches infinity). Specifically, when using the cross-entropy loss, regardless of how large the network width is (as long as it is finite), the empirical NTK diverges from the NTK on the training samples as training time increases. To establish this result, we first demonstrate the strictly positive definiteness of the NTKs for multi-layer FCNs and ResNets. Then, we prove that during training, % with the cross-entropy loss, the neural network parameters diverge if the smallest eigenvalue of the empirical NTK matrix (Gram matrix) with respect to training samples is bounded below by a positive constant. This behavior contrasts sharply with the lazy training regime commonly observed in regression problems. Consequently, using a proof by contradiction, we show that the empirical NTK does not uniformly converge to the NTK across all times on the training samples as the network width increases. We validate our theoretical results through experiments on both synthetic data and the MNIST classification task. This finding implies that NTK theory is not applicable in this context, with significant theoretical implications for understanding neural networks in classification problems.
Via

Apr 15, 2025
Abstract:Background: Deep learning has significantly advanced medical image analysis, with Vision Transformers (ViTs) offering a powerful alternative to convolutional models by modeling long-range dependencies through self-attention. However, ViTs are inherently data-intensive and lack domain-specific inductive biases, limiting their applicability in medical imaging. In contrast, radiomics provides interpretable, handcrafted descriptors of tissue heterogeneity but suffers from limited scalability and integration into end-to-end learning frameworks. In this work, we propose the Radiomics-Embedded Vision Transformer (RE-ViT) that combines radiomic features with data-driven visual embeddings within a ViT backbone. Purpose: To develop a hybrid RE-ViT framework that integrates radiomics and patch-wise ViT embeddings through early fusion, enhancing robustness and performance in medical image classification. Methods: Following the standard ViT pipeline, images were divided into patches. For each patch, handcrafted radiomic features were extracted and fused with linearly projected pixel embeddings. The fused representations were normalized, positionally encoded, and passed to the ViT encoder. A learnable [CLS] token aggregated patch-level information for classification. We evaluated RE-ViT on three public datasets (including BUSI, ChestXray2017, and Retinal OCT) using accuracy, macro AUC, sensitivity, and specificity. RE-ViT was benchmarked against CNN-based (VGG-16, ResNet) and hybrid (TransMed) models. Results: RE-ViT achieved state-of-the-art results: on BUSI, AUC=0.950+/-0.011; on ChestXray2017, AUC=0.989+/-0.004; on Retinal OCT, AUC=0.986+/-0.001, which outperforms other comparison models. Conclusions: The RE-ViT framework effectively integrates radiomics with ViT architectures, demonstrating improved performance and generalizability across multimodal medical image classification tasks.
* 27 pages, 3 figures
Via

Apr 15, 2025
Abstract:Deep learning has been reported to achieve high performances in the detection of skin cancer, yet many challenges regarding the reproducibility of results and biases remain. This study is a replication (different data, same analysis) of a study on Alzheimer's disease [28] which studied robustness of logistic regression (LR) and convolutional neural networks (CNN) across patient sexes. We explore sex bias in skin cancer detection, using the PAD-UFES-20 dataset with LR trained on handcrafted features reflecting dermatological guidelines (ABCDE and the 7-point checklist), and a pre-trained ResNet-50 model. We evaluate these models in alignment with [28]: across multiple training datasets with varied sex composition to determine their robustness. Our results show that both the LR and the CNN were robust to the sex distributions, but the results also revealed that the CNN had a significantly higher accuracy (ACC) and area under the receiver operating characteristics (AUROC) for male patients than for female patients. We hope these findings to contribute to the growing field of investigating potential bias in popular medical machine learning methods. The data and relevant scripts to reproduce our results can be found in our Github.
* 16 pages (excluding appendix), 2 figures (excluding appendix),
submitted to MIUA 2025 conference (response pending)
Via

Apr 14, 2025
Abstract:Equations, particularly differential equations, are fundamental for understanding natural phenomena and predicting complex dynamics across various scientific and engineering disciplines. However, the governing equations for many complex systems remain unknown due to intricate underlying mechanisms. Recent advancements in machine learning and data science offer a new paradigm for modeling unknown equations from measurement or simulation data. This paradigm shift, known as data-driven discovery or modeling, stands at the forefront of AI for science, with significant progress made in recent years. In this paper, we introduce a systematic framework for data-driven modeling of unknown equations using deep learning. This versatile framework is capable of learning unknown ODEs, PDEs, DAEs, IDEs, SDEs, reduced or partially observed systems, and non-autonomous differential equations. Based on this framework, we have developed Deep Unknown Equations (DUE), an open-source software package designed to facilitate the data-driven modeling of unknown equations using modern deep learning techniques. DUE serves as an educational tool for classroom instruction, enabling students and newcomers to gain hands-on experience with differential equations, data-driven modeling, and contemporary deep learning approaches such as FNN, ResNet, generalized ResNet, operator semigroup networks (OSG-Net), and Transformers. Additionally, DUE is a versatile and accessible toolkit for researchers across various scientific and engineering fields. It is applicable not only for learning unknown equations from data but also for surrogate modeling of known, yet complex, equations that are costly to solve using traditional numerical methods. We provide detailed descriptions of DUE and demonstrate its capabilities through diverse examples, which serve as templates that can be easily adapted for other applications.
* 28 pages
Via
