What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Nov 15, 2024
Abstract:Multimodal Large Language Models (MLLMs) excel at descriptive tasks within images but often struggle with precise object localization, a critical element for reliable visual interpretation. In contrast, traditional object detection models provide high localization accuracy but frequently generate detections lacking contextual coherence due to limited modeling of inter-object relationships. To address this fundamental limitation, we introduce the \textbf{Visual-Linguistic Agent (VLA), a collaborative framework that combines the relational reasoning strengths of MLLMs with the precise localization capabilities of traditional object detectors. In the VLA paradigm, the MLLM serves as a central Linguistic Agent, working collaboratively with specialized Vision Agents for object detection and classification. The Linguistic Agent evaluates and refines detections by reasoning over spatial and contextual relationships among objects, while the classification Vision Agent offers corrective feedback to improve classification accuracy. This collaborative approach enables VLA to significantly enhance both spatial reasoning and object localization, addressing key challenges in multimodal understanding. Extensive evaluations on the COCO dataset demonstrate substantial performance improvements across multiple detection models, highlighting VLA's potential to set a new benchmark in accurate and contextually coherent object detection.
Via
Nov 15, 2024
Abstract:Indoor radar perception has seen rising interest due to affordable costs driven by emerging automotive imaging radar developments and the benefits of reduced privacy concerns and reliability under hazardous conditions (e.g., fire and smoke). However, existing radar perception pipelines fail to account for distinctive characteristics of the multi-view radar setting. In this paper, we propose Radar dEtection TRansformer (RETR), an extension of the popular DETR architecture, tailored for multi-view radar perception. RETR inherits the advantages of DETR, eliminating the need for hand-crafted components for object detection and segmentation in the image plane. More importantly, RETR incorporates carefully designed modifications such as 1) depth-prioritized feature similarity via a tunable positional encoding (TPE); 2) a tri-plane loss from both radar and camera coordinates; and 3) a learnable radar-to-camera transformation via reparameterization, to account for the unique multi-view radar setting. Evaluated on two indoor radar perception datasets, our approach outperforms existing state-of-the-art methods by a margin of 15.38+ AP for object detection and 11.77+ IoU for instance segmentation, respectively.
* 24 pages, Accepted to NeurIPS 2024
Via
Nov 15, 2024
Abstract:The goal of multi-object tracking (MOT) is to detect and track all objects in a scene across frames, while maintaining a unique identity for each object. Most existing methods rely on the spatial motion features and appearance embedding features of the detected objects in consecutive frames. Effectively and robustly representing the spatial and appearance features of long trajectories has become a critical factor affecting the performance of MOT. We propose a novel approach for appearance and spatial feature representation, improving upon the clustering association method MOT\_FCG. For spatial motion features, we propose Diagonal Modulated GIoU, which more accurately represents the relationship between the position and shape of the objects. For appearance features, we utilize a dynamic appearance representation that incorporates confidence information, enabling the trajectory appearance features to be more robust and global. Based on the baseline model MOT\_FCG, we achieved 76.1 HOTA, 80.4 MOTA and 81.3 IDF1 on the MOT17 validation set, and also achieved competitive performance on the MOT20 and DanceTrack validation sets.
* 12 pages, 7 figures
Via
Nov 15, 2024
Abstract:Accurate people counting in smart buildings and intelligent transportation systems is crucial for energy management, safety protocols, and resource allocation. This is especially critical during emergencies, where precise occupant counts are vital for safe evacuation. Existing methods struggle with large crowds, often losing accuracy with even a few additional people. To address this limitation, this study proposes a novel approach combining a new object tracking algorithm, a novel counting algorithm, and a fine-tuned object detection model. This method achieves 97% accuracy in real-time people counting with a frame rate of 20-27 FPS on a low-power edge computer.
* This paper is accepted to IEEE Region 10 conference (TENCON) 2024
Via
Nov 14, 2024
Abstract:Drone-captured images present significant challenges in object detection due to varying shooting conditions, which can alter object appearance and shape. Factors such as drone altitude, angle, and weather cause these variations, influencing the performance of object detection algorithms. To tackle these challenges, we introduce an innovative vision-language approach using learnable prompts. This shift from conventional manual prompts aims to reduce domain-specific knowledge interference, ultimately improving object detection capabilities. Furthermore, we streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training, enhancing efficiency without compromising performance. Our study contributes to domain-generalized object detection by leveraging learnable prompts and optimizing training processes. This enhances model robustness and adaptability across diverse environments, leading to more effective aerial object detection.
* ICIP 2024 Workshop accepted paper
Via
Nov 15, 2024
Abstract:The current vision-based aphid counting methods in water traps suffer from undercounts caused by occlusions and low visibility arising from dense aggregation of insects and other objects. To address this problem, we propose a novel aphid counting method through interactive stirring actions. We use interactive stirring to alter the distribution of aphids in the yellow water trap and capture a sequence of images which are then used for aphid detection and counting through an optimized small object detection network based on Yolov5. We also propose a counting confidence evaluation system to evaluate the confidence of count-ing results. The final counting result is a weighted sum of the counting results from all sequence images based on the counting confidence. Experimental results show that our proposed aphid detection network significantly outperforms the original Yolov5, with improvements of 33.9% in AP@0.5 and 26.9% in AP@[0.5:0.95] on the aphid test set. In addition, the aphid counting test results using our proposed counting confidence evaluation system show significant improvements over the static counting method, closely aligning with manual counting results.
Via
Nov 15, 2024
Abstract:We present a novel, open-access dataset designed for semantic layout analysis, built to support document recreation workflows through mapping with the Text Encoding Initiative (TEI) standard. This dataset includes 7,254 annotated pages spanning a large temporal range (1600-2024) of digitised and born-digital materials across diverse document types (magazines, papers from sciences and humanities, PhD theses, monographs, plays, administrative reports, etc.) sorted into modular subsets. By incorporating content from different periods and genres, it addresses varying layout complexities and historical changes in document structure. The modular design allows domain-specific configurations. We evaluate object detection models on this dataset, examining the impact of input size and subset-based training. Results show that a 1280-pixel input size for YOLO is optimal and that training on subsets generally benefits from incorporating them into a generic model rather than fine-tuning pre-trained weights.
Via
Nov 14, 2024
Abstract:Pre-training plays a vital role in various vision tasks, such as object recognition and detection. Commonly used pre-training methods, which typically rely on randomized approaches like uniform or Gaussian distributions to initialize model parameters, often fall short when confronted with long-tailed distributions, especially in detection tasks. This is largely due to extreme data imbalance and the issue of simplicity bias. In this paper, we introduce a novel pre-training framework for object detection, called Dynamic Rebalancing Contrastive Learning with Dual Reconstruction (2DRCL). Our method builds on a Holistic-Local Contrastive Learning mechanism, which aligns pre-training with object detection by capturing both global contextual semantics and detailed local patterns. To tackle the imbalance inherent in long-tailed data, we design a dynamic rebalancing strategy that adjusts the sampling of underrepresented instances throughout the pre-training process, ensuring better representation of tail classes. Moreover, Dual Reconstruction addresses simplicity bias by enforcing a reconstruction task aligned with the self-consistency principle, specifically benefiting underrepresented tail classes. Experiments on COCO and LVIS v1.0 datasets demonstrate the effectiveness of our method, particularly in improving the mAP/AP scores for tail classes.
* Accepted by NeurIPS 2024
Via
Nov 14, 2024
Abstract:In recent years, attention mechanisms have significantly enhanced the performance of object detection by focusing on key feature information. However, prevalent methods still encounter difficulties in effectively balancing local and global features. This imbalance hampers their ability to capture both fine-grained details and broader contextual information-two critical elements for achieving accurate object detection.To address these challenges, we propose a novel attention mechanism, termed Local-Global Attention, which is designed to better integrate both local and global contextual features. Specifically, our approach combines multi-scale convolutions with positional encoding, enabling the model to focus on local details while concurrently considering the broader global context. Additionally, we introduce a learnable parameters, which allow the model to dynamically adjust the relative importance of local and global attention, depending on the specific requirements of the task, thereby optimizing feature representations across multiple scales.We have thoroughly evaluated the Local-Global Attention mechanism on several widely used object detection and classification datasets. Our experimental results demonstrate that this approach significantly enhances the detection of objects at various scales, with particularly strong performance on multi-class and small object detection tasks. In comparison to existing attention mechanisms, Local-Global Attention consistently outperforms them across several key metrics, all while maintaining computational efficiency.
Via
Nov 14, 2024
Abstract:The primary value of infrared and visible image fusion technology lies in applying the fusion results to downstream tasks. However, existing methods face challenges such as increased training complexity and significantly compromised performance of individual tasks when addressing multiple downstream tasks simultaneously. To tackle this, we propose Task-Oriented Adaptive Regulation (T-OAR), an adaptive mechanism specifically designed for multi-task environments. Additionally, we introduce the Task-related Dynamic Prompt Injection (T-DPI) module, which generates task-specific dynamic prompts from user-input text instructions and integrates them into target representations. This guides the feature extraction module to produce representations that are more closely aligned with the specific requirements of downstream tasks. By incorporating the T-DPI module into the T-OAR framework, our approach generates fusion images tailored to task-specific requirements without the need for separate training or task-specific weights. This not only reduces computational costs but also enhances adaptability and performance across multiple tasks. Experimental results show that our method excels in object detection, semantic segmentation, and salient object detection, demonstrating its strong adaptability, flexibility, and task specificity. This provides an efficient solution for image fusion in multi-task environments, highlighting the technology's potential across diverse applications.
* 10 pages, 7 figures
Via