What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jul 10, 2025
Abstract:Image sensors are integral to a wide range of safety- and security-critical systems, including surveillance infrastructure, autonomous vehicles, and industrial automation. These systems rely on the integrity of visual data to make decisions. In this work, we investigate a novel class of electromagnetic signal injection attacks that target the analog domain of image sensors, allowing adversaries to manipulate raw visual inputs without triggering conventional digital integrity checks. We uncover a previously undocumented attack phenomenon on CMOS image sensors: rainbow-like color artifacts induced in images captured by image sensors through carefully tuned electromagnetic interference. We further evaluate the impact of these attacks on state-of-the-art object detection models, showing that the injected artifacts propagate through the image signal processing pipeline and lead to significant mispredictions. Our findings highlight a critical and underexplored vulnerability in the visual perception stack, highlighting the need for more robust defenses against physical-layer attacks in such systems.
* 5 pages, 4 figures
Via

Jul 09, 2025
Abstract:Critical retained foreign objects (RFOs), including surgical instruments like sponges and needles, pose serious patient safety risks and carry significant financial and legal implications for healthcare institutions. Detecting critical RFOs using artificial intelligence remains challenging due to their rarity and the limited availability of chest X-ray datasets that specifically feature critical RFOs cases. Existing datasets only contain non-critical RFOs, like necklace or zipper, further limiting their utility for developing clinically impactful detection algorithms. To address these limitations, we introduce "Hopkins RFOs Bench", the first and largest dataset of its kind, containing 144 chest X-ray images of critical RFO cases collected over 18 years from the Johns Hopkins Health System. Using this dataset, we benchmark several state-of-the-art object detection models, highlighting the need for enhanced detection methodologies for critical RFO cases. Recognizing data scarcity challenges, we further explore image synthetic methods to bridge this gap. We evaluate two advanced synthetic image methods, DeepDRR-RFO, a physics-based method, and RoentGen-RFO, a diffusion-based method, for creating realistic radiographs featuring critical RFOs. Our comprehensive analysis identifies the strengths and limitations of each synthetic method, providing insights into effectively utilizing synthetic data to enhance model training. The Hopkins RFOs Bench and our findings significantly advance the development of reliable, generalizable AI-driven solutions for detecting critical RFOs in clinical chest X-rays.
Via

Jul 09, 2025
Abstract:While automated vehicles hold the potential to significantly reduce traffic accidents, their perception systems remain vulnerable to sensor degradation caused by adverse weather and environmental occlusions. Collective perception, which enables vehicles to share information, offers a promising approach to overcoming these limitations. However, to this date collective perception in adverse weather is mostly unstudied. Therefore, we conduct the first study of LiDAR-based collective perception under diverse weather conditions and present a novel multi-task architecture for LiDAR-based collective perception under adverse weather. Adverse weather conditions can not only degrade perception capabilities, but also negatively affect bandwidth requirements and latency due to the introduced noise that is also transmitted and processed. Denoising prior to communication can effectively mitigate these issues. Therefore, we propose DenoiseCP-Net, a novel multi-task architecture for LiDAR-based collective perception under adverse weather conditions. DenoiseCP-Net integrates voxel-level noise filtering and object detection into a unified sparse convolution backbone, eliminating redundant computations associated with two-stage pipelines. This design not only reduces inference latency and computational cost but also minimizes communication overhead by removing non-informative noise. We extended the well-known OPV2V dataset by simulating rain, snow, and fog using our realistic weather simulation models. We demonstrate that DenoiseCP-Net achieves near-perfect denoising accuracy in adverse weather, reduces the bandwidth requirements by up to 23.6% while maintaining the same detection accuracy and reducing the inference latency for cooperative vehicles.
Via

Jul 09, 2025
Abstract:Open vocabulary Human-Object Interaction (HOI) detection is a challenging task that detects all <human, verb, object> triplets of interest in an image, even those that are not pre-defined in the training set. Existing approaches typically rely on output features generated by large Vision-Language Models (VLMs) to enhance the generalization ability of interaction representations. However, the visual features produced by VLMs are holistic and coarse-grained, which contradicts the nature of detection tasks. To address this issue, we propose a novel Bilateral Collaboration framework for open vocabulary HOI detection (BC-HOI). This framework includes an Attention Bias Guidance (ABG) component, which guides the VLM to produce fine-grained instance-level interaction features according to the attention bias provided by the HOI detector. It also includes a Large Language Model (LLM)-based Supervision Guidance (LSG) component, which provides fine-grained token-level supervision for the HOI detector by the LLM component of the VLM. LSG enhances the ability of ABG to generate high-quality attention bias. We conduct extensive experiments on two popular benchmarks: HICO-DET and V-COCO, consistently achieving superior performance in the open vocabulary and closed settings. The code will be released in Github.
* ICCV 2025
Via

Jul 09, 2025
Abstract:Visual effects (VFX) production often struggles with slow, resource-intensive mask generation. This paper presents an automated video segmentation pipeline that creates temporally consistent instance masks. It employs machine learning for: (1) flexible object detection via text prompts, (2) refined per-frame image segmentation and (3) robust video tracking to ensure temporal stability. Deployed using containerization and leveraging a structured output format, the pipeline was quickly adopted by our artists. It significantly reduces manual effort, speeds up the creation of preliminary composites, and provides comprehensive segmentation data, thereby enhancing overall VFX production efficiency.
Via

Jul 09, 2025
Abstract:Object navigation in open-world environments remains a formidable and pervasive challenge for robotic systems, particularly when it comes to executing long-horizon tasks that require both open-world object detection and high-level task planning. Traditional methods often struggle to integrate these components effectively, and this limits their capability to deal with complex, long-range navigation missions. In this paper, we propose LOVON, a novel framework that integrates large language models (LLMs) for hierarchical task planning with open-vocabulary visual detection models, tailored for effective long-range object navigation in dynamic, unstructured environments. To tackle real-world challenges including visual jittering, blind zones, and temporary target loss, we design dedicated solutions such as Laplacian Variance Filtering for visual stabilization. We also develop a functional execution logic for the robot that guarantees LOVON's capabilities in autonomous navigation, task adaptation, and robust task completion. Extensive evaluations demonstrate the successful completion of long-sequence tasks involving real-time detection, search, and navigation toward open-vocabulary dynamic targets. Furthermore, real-world experiments across different legged robots (Unitree Go2, B2, and H1-2) showcase the compatibility and appealing plug-and-play feature of LOVON.
* 9 pages, 10 figures; Project Page:
https://daojiepeng.github.io/LOVON/
Via

Jul 09, 2025
Abstract:Thermal imaging from unmanned aerial vehicles (UAVs) holds significant potential for applications in search and rescue, wildlife monitoring, and emergency response, especially under low-light or obscured conditions. However, the scarcity of large-scale, diverse thermal aerial datasets limits the advancement of deep learning models in this domain, primarily due to the high cost and logistical challenges of collecting thermal data. In this work, we introduce a novel procedural pipeline for generating synthetic thermal images from an aerial perspective. Our method integrates arbitrary object classes into existing thermal backgrounds by providing control over the position, scale, and orientation of the new objects, while aligning them with the viewpoints of the background. We enhance existing thermal datasets by introducing new object categories, specifically adding a drone class in urban environments to the HIT-UAV dataset and an animal category to the MONET dataset. In evaluating these datasets for object detection task, we showcase strong performance across both new and existing classes, validating the successful expansion into new applications. Through comparative analysis, we show that thermal detectors outperform their visible-light-trained counterparts and highlight the importance of replicating aerial viewing angles. Project page: https://github.com/larics/thermal_aerial_synthetic.
* Preprint. Accepted at ECMR 2025
Via

Jul 09, 2025
Abstract:Insects comprise millions of species, many experiencing severe population declines under environmental and habitat changes. High-throughput approaches are crucial for accelerating our understanding of insect diversity, with DNA barcoding and high-resolution imaging showing strong potential for automatic taxonomic classification. However, most image-based approaches rely on individual specimen data, unlike the unsorted bulk samples collected in large-scale ecological surveys. We present the Mixed Arthropod Sample Segmentation and Identification (MassID45) dataset for training automatic classifiers of bulk insect samples. It uniquely combines molecular and imaging data at both the unsorted sample level and the full set of individual specimens. Human annotators, supported by an AI-assisted tool, performed two tasks on bulk images: creating segmentation masks around each individual arthropod and assigning taxonomic labels to over 17 000 specimens. Combining the taxonomic resolution of DNA barcodes with precise abundance estimates of bulk images holds great potential for rapid, large-scale characterization of insect communities. This dataset pushes the boundaries of tiny object detection and instance segmentation, fostering innovation in both ecological and machine learning research.
* 13 pages, 6 figures, submitted to Scientific Data
Via

Jul 10, 2025
Abstract:Accurate position estimation is essential for modern navigation systems deployed in autonomous platforms, including ground vehicles, marine vessels, and aerial drones. In this context, Visual Simultaneous Localisation and Mapping (VSLAM) - which includes Visual Odometry - relies heavily on the reliable extraction of salient feature points from the visual input data. In this work, we propose an embedded implementation of an unsupervised architecture capable of detecting and describing feature points. It is based on a quantised SuperPoint convolutional neural network. Our objective is to minimise the computational demands of the model while preserving high detection quality, thus facilitating efficient deployment on platforms with limited resources, such as mobile or embedded systems. We implemented the solution on an FPGA System-on-Chip (SoC) platform, specifically the AMD/Xilinx Zynq UltraScale+, where we evaluated the performance of Deep Learning Processing Units (DPUs) and we also used the Brevitas library and the FINN framework to perform model quantisation and hardware-aware optimisation. This allowed us to process 640 x 480 pixel images at up to 54 fps on an FPGA platform, outperforming state-of-the-art solutions in the field. We conducted experiments on the TUM dataset to demonstrate and discuss the impact of different quantisation techniques on the accuracy and performance of the model in a visual odometry task.
* Accepted for the DSD 2025 conference in Salerno, Italy
Via

Jul 09, 2025
Abstract:High-speed vision sensing is essential for real-time perception in applications such as robotics, autonomous vehicles, and industrial automation. Traditional frame-based vision systems suffer from motion blur, high latency, and redundant data processing, limiting their performance in dynamic environments. Event cameras, which capture asynchronous brightness changes at the pixel level, offer a promising alternative but pose challenges in object detection due to sparse and noisy event streams. To address this, we propose an event autoencoder architecture that efficiently compresses and reconstructs event data while preserving critical spatial and temporal features. The proposed model employs convolutional encoding and incorporates adaptive threshold selection and a lightweight classifier to enhance recognition accuracy while reducing computational complexity. Experimental results on the existing Smart Event Face Dataset (SEFD) demonstrate that our approach achieves comparable accuracy to the YOLO-v4 model while utilizing up to $35.5\times$ fewer parameters. Implementations on embedded platforms, including Raspberry Pi 4B and NVIDIA Jetson Nano, show high frame rates ranging from 8 FPS up to 44.8 FPS. The proposed classifier exhibits up to 87.84x better FPS than the state-of-the-art and significantly improves event-based vision performance, making it ideal for low-power, high-speed applications in real-time edge computing.
Via
