What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jan 31, 2025
Abstract:Sketches, with their expressive potential, allow humans to convey the essence of an object through even a rough contour. For the first time, we harness this expressive potential to improve segmentation performance in challenging tasks like camouflaged object detection (COD). Our approach introduces an innovative sketch-guided interactive segmentation framework, allowing users to intuitively annotate objects with freehand sketches (drawing a rough contour of the object) instead of the traditional bounding boxes or points used in classic interactive segmentation models like SAM. We demonstrate that sketch input can significantly improve performance in existing iterative segmentation methods, outperforming text or bounding box annotations. Additionally, we introduce key modifications to network architectures and a novel sketch augmentation technique to fully harness the power of sketch input and further boost segmentation accuracy. Remarkably, our model' s output can be directly used to train other neural networks, achieving results comparable to pixel-by-pixel annotations--while reducing annotation time by up to 120 times, which shows great potential in democratizing the annotation process and enabling model training with less reliance on resource-intensive, laborious pixel-level annotations. We also present KOSCamo+, the first freehand sketch dataset for camouflaged object detection. The dataset, code, and the labeling tool will be open sourced.
Via
Jan 31, 2025
Abstract:Global Coconut (Cocos nucifera (L.)) cultivation faces significant challenges, including yield loss, due to pest and disease outbreaks. In particular, Weligama Coconut Leaf Wilt Disease (WCWLD) and Coconut Caterpillar Infestation (CCI) damage coconut trees, causing severe coconut production loss in Sri Lanka and nearby coconut-producing countries. Currently, both WCWLD and CCI are detected through on-field human observations, a process that is not only time-consuming but also limits the early detection of infections. This paper presents a study conducted in Sri Lanka, demonstrating the effectiveness of employing transfer learning-based Convolutional Neural Network (CNN) and Mask Region-based-CNN (Mask R-CNN) to identify WCWLD and CCI at their early stages and to assess disease progression. Further, this paper presents the use of the You Only Look Once (YOLO) object detection model to count the number of caterpillars distributed on leaves with CCI. The introduced methods were tested and validated using datasets collected from Matara, Puttalam, and Makandura, Sri Lanka. The results show that the proposed methods identify WCWLD and CCI with an accuracy of 90% and 95%, respectively. In addition, the proposed WCWLD disease severity identification method classifies the severity with an accuracy of 97%. Furthermore, the accuracies of the object detection models for calculating the number of caterpillars in the leaflets were: YOLOv5-96.87%, YOLOv8-96.1%, and YOLO11-95.9%.
Via
Jan 31, 2025
Abstract:The Great Outdoors (GO) dataset is a multi-modal annotated data resource aimed at advancing ground robotics research in unstructured environments. This dataset provides the most comprehensive set of data modalities and annotations compared to existing off-road datasets. In total, the GO dataset includes six unique sensor types with high-quality semantic annotations and GPS traces to support tasks such as semantic segmentation, object detection, and SLAM. The diverse environmental conditions represented in the dataset present significant real-world challenges that provide opportunities to develop more robust solutions to support the continued advancement of field robotics, autonomous exploration, and perception systems in natural environments. The dataset can be downloaded at: https://www.unmannedlab.org/the-great-outdoors-dataset/
* 5 pages, 5 figures
Via
Jan 30, 2025
Abstract:This study addresses the need for accurate and efficient object detection in assistive technologies for visually impaired individuals. We evaluate four real-time object detection algorithms YOLO, SSD, Faster R-CNN, and Mask R-CNN within the context of indoor navigation assistance. Using the Indoor Objects Detection dataset, we analyze detection accuracy, processing speed, and adaptability to indoor environments. Our findings highlight the trade-offs between precision and efficiency, offering insights into selecting optimal algorithms for realtime assistive navigation. This research advances adaptive machine learning applications, enhancing indoor navigation solutions for the visually impaired and promoting accessibility.
* 5 pages, 2 figures, 3 tables
Via
Jan 30, 2025
Abstract:One of the main challenges in unlocking the potential of neuromorphic cameras, also called 'event cameras', is the development of novel methods that solve the multi-parameter problem of adjusting their bias parameters to accommodate a desired task. Actually, it is very difficult to find in the literature a systematic heuristic that solves the problem for any desired application. In this paper we present a tuning parametes heuristic for the biases of event cameras, for tasks that require small objects detection in staring scenarios. The main purpose of the heuristic is to squeeze the camera's potential, optimize its performance, and expand its detection capabilities as much as possible. In the presentation, we translate the experimental properties of event camera and systemic constrains into mathematical terms, and show, under certain assumptions, how the multi-variable problem collapses into a two-parameter problem that can be solved experimentally. A main conclusion that will be demonstrated is that for certain desired signals, such as the one provided by an incandescent lamp powered by the periodic electrical grid, the optimal values of the camera are very far from the default values recommended by the manufacturer.
* 17 pages, 2 figures
Via
Jan 30, 2025
Abstract:In autonomous driving, The perception capabilities of the ego-vehicle can be improved with roadside sensors, which can provide a holistic view of the environment. However, existing monocular detection methods designed for vehicle cameras are not suitable for roadside cameras due to viewpoint domain gaps. To bridge this gap and Improve ROAdside Monocular 3D object detection, we propose IROAM, a semantic-geometry decoupled contrastive learning framework, which takes vehicle-side and roadside data as input simultaneously. IROAM has two significant modules. In-Domain Query Interaction module utilizes a transformer to learn content and depth information for each domain and outputs object queries. Cross-Domain Query Enhancement To learn better feature representations from two domains, Cross-Domain Query Enhancement decouples queries into semantic and geometry parts and only the former is used for contrastive learning. Experiments demonstrate the effectiveness of IROAM in improving roadside detector's performance. The results validate that IROAM has the capabilities to learn cross-domain information.
* 7 pages, 5 figures, ICRA2025
Via
Jan 30, 2025
Abstract:Spot spraying represents an efficient and sustainable method for reducing the amount of pesticides, particularly herbicides, used in agricultural fields. To achieve this, it is of utmost importance to reliably differentiate between crops and weeds, and even between individual weed species in situ and under real-time conditions. To assess suitability for real-time application, different object detection models that are currently state-of-the-art are compared. All available models of YOLOv8, YOLOv9, YOLOv10, and RT-DETR are trained and evaluated with images from a real field situation. The images are separated into two distinct datasets: In the initial data set, each species of plants is trained individually; in the subsequent dataset, a distinction is made between monocotyledonous weeds, dicotyledonous weeds, and three chosen crops. The results demonstrate that while all models perform equally well in the metrics evaluated, the YOLOv9 models, particularly the YOLOv9s and YOLOv9e, stand out in terms of their strong recall scores (66.58 % and 72.36 %), as well as mAP50 (73.52 % and 79.86 %), and mAP50-95 (43.82 % and 47.00 %) in dataset 2. However, the RT-DETR models, especially RT-DETR-l, excel in precision with reaching 82.44 \% on dataset 1 and 81.46 % in dataset 2, making them particularly suitable for scenarios where minimizing false positives is critical. In particular, the smallest variants of the YOLO models (YOLOv8n, YOLOv9t, and YOLOv10n) achieve substantially faster inference times down to 7.58 ms for dataset 2 on the NVIDIA GeForce RTX 4090 GPU for analyzing one frame, while maintaining competitive accuracy, highlighting their potential for deployment in resource-constrained embedded computing devices as typically used in productive setups.
Via
Jan 29, 2025
Abstract:Object detection in unmanned aerial vehicle (UAV) remote sensing images poses significant challenges due to unstable image quality, small object sizes, complex backgrounds, and environmental occlusions. Small objects, in particular, occupy minimal portions of images, making their accurate detection highly difficult. Existing multi-scale feature fusion methods address these challenges to some extent by aggregating features across different resolutions. However, these methods often fail to effectively balance classification and localization performance for small objects, primarily due to insufficient feature representation and imbalanced network information flow. In this paper, we propose a novel feature fusion framework specifically designed for UAV object detection tasks to enhance both localization accuracy and classification performance. The proposed framework integrates hybrid upsampling and downsampling modules, enabling feature maps from different network depths to be flexibly adjusted to arbitrary resolutions. This design facilitates cross-layer connections and multi-scale feature fusion, ensuring improved representation of small objects. Our approach leverages hybrid downsampling to enhance fine-grained feature representation, improving spatial localization of small targets, even under complex conditions. Simultaneously, the upsampling module aggregates global contextual information, optimizing feature consistency across scales and enhancing classification robustness in cluttered scenes. Experimental results on two public UAV datasets demonstrate the effectiveness of the proposed framework. Integrated into the YOLO-V10 model, our method achieves a 2\% improvement in average precision (AP) compared to the baseline YOLO-V10 model, while maintaining the same number of parameters. These results highlight the potential of our framework for accurate and efficient UAV object detection.
Via
Jan 29, 2025
Abstract:Despite significant advancements in environment perception capabilities for autonomous driving and intelligent robotics, cameras and LiDARs remain notoriously unreliable in low-light conditions and adverse weather, which limits their effectiveness. Radar serves as a reliable and low-cost sensor that can effectively complement these limitations. However, radar-based object detection has been underexplored due to the inherent weaknesses of radar data, such as low resolution, high noise, and lack of visual information. In this paper, we present TransRAD, a novel 3D radar object detection model designed to address these challenges by leveraging the Retentive Vision Transformer (RMT) to more effectively learn features from information-dense radar Range-Azimuth-Doppler (RAD) data. Our approach leverages the Retentive Manhattan Self-Attention (MaSA) mechanism provided by RMT to incorporate explicit spatial priors, thereby enabling more accurate alignment with the spatial saliency characteristics of radar targets in RAD data and achieving precise 3D radar detection across Range-Azimuth-Doppler dimensions. Furthermore, we propose Location-Aware NMS to effectively mitigate the common issue of duplicate bounding boxes in deep radar object detection. The experimental results demonstrate that TransRAD outperforms state-of-the-art methods in both 2D and 3D radar detection tasks, achieving higher accuracy, faster inference speed, and reduced computational complexity. Code is available at https://github.com/radar-lab/TransRAD
* Accepted by IEEE Transactions on Radar Systems
Via
Jan 29, 2025
Abstract:Given the energy constraints in autonomous mobile agents (AMAs), such as unmanned vehicles, spiking neural networks (SNNs) are increasingly favored as a more efficient alternative to traditional artificial neural networks. AMAs employ multi-object detection (MOD) from multiple cameras to identify nearby objects while ensuring two essential objectives, (R1) timing guarantee and (R2) high accuracy for safety. In this paper, we propose RT-SNN, the first system design, aiming at achieving R1 and R2 in SNN-based MOD systems on AMAs. Leveraging the characteristic that SNNs gather feature data of input image termed as membrane potential, through iterative computation over multiple timesteps, RT-SNN provides multiple execution options with adjustable timesteps and a novel method for reusing membrane potential to support R1. Then, it captures how these execution strategies influence R2 by introducing a novel notion of mean absolute error and membrane confidence. Further, RT-SNN develops a new scheduling framework consisting of offline schedulability analysis for R1 and a run-time scheduling algorithm for R2 using the notion of membrane confidence. We deployed RT-SNN to Spiking-YOLO, the SNN-based MOD model derived from ANN-to-SNN conversion, and our experimental evaluation confirms its effectiveness in meeting the R1 and R2 requirements while providing significant energy efficiency.
* 7 pages
Via