What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Mar 07, 2025
Abstract:One-class anomaly detection aims to detect objects that do not belong to a predefined normal class. In practice training data lack those anomalous samples; hence state-of-the-art methods are trained to discriminate between normal and synthetically-generated pseudo-anomalous data. Most methods use data augmentation techniques on normal images to simulate anomalies. However the best-performing ones implicitly leverage a geometric bias present in the benchmarking datasets. This limits their usability in more general conditions. Others are relying on basic noising schemes that may be suboptimal in capturing the underlying structure of normal data. In addition most still favour the image domain to generate pseudo-anomalies training models end-to-end from only the normal class and overlooking richer representations of the information. To overcome these limitations we consider frozen yet rich feature spaces given by pretrained models and create pseudo-anomalous features with a novel adaptive linear feature perturbation technique. It adapts the noise distribution to each sample applies decaying linear perturbations to feature vectors and further guides the classification process using a contrastive learning objective. Experimental evaluation conducted on both standard and geometric bias-free datasets demonstrates the superiority of our approach with respect to comparable baselines. The codebase is accessible via our public repository.
* Published in WACV 2025
Via

Mar 06, 2025
Abstract:Artificial intelligence has progressed through the development of Vision-Language Models (VLMs), which integrate text and visual inputs to achieve comprehensive understanding and interaction in various contexts. Enhancing the performance of these models such as the transformer based Florence 2 on specialized tasks like object detection in complex and unstructured environments requires fine-tuning. The goal of this paper is to improve the efficiency of the Florence 2 model in challenging environments by finetuning it. We accomplished this by experimenting with different configurations, using various GPU types (T4, L4, A100) and optimizers such as AdamW and SGD. We also employed a range of learning rates and LoRA (Low Rank Adaptation) settings. Analyzing the performance metrics, such as Mean Average Precision (mAP) scores,reveals that the finetuned Florence 2 models performed comparably to YOLO models, including YOLOv8, YOLOv9, and YOLOv10. This demonstrates how transformer based VLMs can be adapted for detailed object detection tasks. The paper emphasizes the capability of optimized transformer based VLMs to address specific challenges in object detection within unstructured environments, opening up promising avenues for practical applications in demanding and complex settings.
* 22 pages, 13 Figures, 6 Tables
Via

Mar 06, 2025
Abstract:Real-time object detectors like YOLO achieve exceptional performance when trained on large datasets for multiple epochs. However, in real-world scenarios where data arrives incrementally, neural networks suffer from catastrophic forgetting, leading to a loss of previously learned knowledge. To address this, prior research has explored strategies for Class Incremental Learning (CIL) in Continual Learning for Object Detection (CLOD), with most approaches focusing on two-stage object detectors. However, existing work suggests that Learning without Forgetting (LwF) may be ineffective for one-stage anchor-free detectors like YOLO due to noisy regression outputs, which risk transferring corrupted knowledge. In this work, we introduce YOLO LwF, a self-distillation approach tailored for YOLO-based continual object detection. We demonstrate that when coupled with a replay memory, YOLO LwF significantly mitigates forgetting. Compared to previous approaches, it achieves state-of-the-art performance, improving mAP by +2.1% and +2.9% on the VOC and COCO benchmarks, respectively.
Via

Mar 06, 2025
Abstract:Although advances in deep learning and aerial surveillance technology are improving wildlife conservation efforts, complex and erratic environmental conditions still pose a problem, requiring innovative solutions for cost-effective small animal detection. This work introduces DEAL-YOLO, a novel approach that improves small object detection in Unmanned Aerial Vehicle (UAV) images by using multi-objective loss functions like Wise IoU (WIoU) and Normalized Wasserstein Distance (NWD), which prioritize pixels near the centre of the bounding box, ensuring smoother localization and reducing abrupt deviations. Additionally, the model is optimized through efficient feature extraction with Linear Deformable (LD) convolutions, enhancing accuracy while maintaining computational efficiency. The Scaled Sequence Feature Fusion (SSFF) module enhances object detection by effectively capturing inter-scale relationships, improving feature representation, and boosting metrics through optimized multiscale fusion. Comparison with baseline models reveals high efficacy with up to 69.5\% fewer parameters compared to vanilla Yolov8-N, highlighting the robustness of the proposed modifications. Through this approach, our paper aims to facilitate the detection of endangered species, animal population analysis, habitat monitoring, biodiversity research, and various other applications that enrich wildlife conservation efforts. DEAL-YOLO employs a two-stage inference paradigm for object detection, refining selected regions to improve localization and confidence. This approach enhances performance, especially for small instances with low objectness scores.
* Accepted as a Poster at the ML4RS Workshop at ICLR 2025
Via

Mar 06, 2025
Abstract:Gas leakage poses a significant hazard that requires prevention. Traditionally, human inspection has been used for detection, a slow and labour-intensive process. Recent research has applied machine learning techniques to this problem, yet there remains a shortage of high-quality, publicly available datasets. This paper introduces a synthetic dataset featuring diverse backgrounds, interfering foreground objects, diverse leak locations, and precise segmentation ground truth. We propose a zero-shot method that combines background subtraction, zero-shot object detection, filtering, and segmentation to leverage this dataset. Experimental results indicate that our approach significantly outperforms baseline methods based solely on background subtraction and zero-shot object detection with segmentation, reaching an IoU of 69\% overall. We also present an analysis of various prompt configurations and threshold settings to provide deeper insights into the performance of our method. The code and dataset will be released after publication.
Via

Mar 07, 2025
Abstract:Cognitive biases, systematic deviations from rationality in judgment, pose significant challenges in generating objective content. This paper introduces a novel approach for real-time cognitive bias detection in user-generated text using large language models (LLMs) and advanced prompt engineering techniques. The proposed system analyzes textual data to identify common cognitive biases such as confirmation bias, circular reasoning, and hidden assumption. By designing tailored prompts, the system effectively leverages LLMs' capabilities to both recognize and mitigate these biases, improving the quality of human-generated content (e.g., news, media, reports). Experimental results demonstrate the high accuracy of our approach in identifying cognitive biases, offering a valuable tool for enhancing content objectivity and reducing the risks of biased decision-making.
* 17 pages. 6 Figures, 2 Tables
Via

Mar 06, 2025
Abstract:Navigating urban environments poses significant challenges for people with disabilities, particularly those with blindness and low vision. Environments with dynamic and unpredictable elements like construction sites are especially challenging. Construction sites introduce hazards like uneven surfaces, obstructive barriers, hazardous materials, and excessive noise, and they can alter routing, complicating safe mobility. Existing assistive technologies are limited, as navigation apps do not account for construction sites during trip planning, and detection tools that attempt hazard recognition struggle to address the extreme variability of construction paraphernalia. This study introduces a novel computer vision-based system that integrates open-vocabulary object detection, a YOLO-based scaffolding-pole detection model, and an optical character recognition (OCR) module to comprehensively identify and interpret construction site elements for assistive navigation. In static testing across seven construction sites, the system achieved an overall accuracy of 88.56\%, reliably detecting objects from 2m to 10m within a 0$^\circ$ -- 75$^\circ$ angular offset. At closer distances (2--4m), the detection rate was 100\% at all tested angles. At
Via

Mar 06, 2025
Abstract:Optical flow is a fundamental technique for motion estimation, widely applied in video stabilization, interpolation, and object tracking. Recent advancements in artificial intelligence (AI) have enabled deep learning models to leverage optical flow as an important feature for motion analysis. However, traditional optical flow methods rely on restrictive assumptions, such as brightness constancy and slow motion constraints, limiting their effectiveness in complex scenes. Deep learning-based approaches require extensive training on large domain-specific datasets, making them computationally demanding. Furthermore, optical flow is typically visualized in the HSV color space, which introduces nonlinear distortions when converted to RGB and is highly sensitive to noise, degrading motion representation accuracy. These limitations inherently constrain the performance of downstream models, potentially hindering object tracking and motion analysis tasks. To address these challenges, we propose Reynolds flow, a novel training-free flow estimation inspired by the Reynolds transport theorem, offering a principled approach to modeling complex motion dynamics. Beyond the conventional HSV-based visualization, denoted ReynoldsFlow, we introduce an alternative representation, ReynoldsFlow+, designed to improve flow visualization. We evaluate ReynoldsFlow and ReynoldsFlow+ across three video-based benchmarks: tiny object detection on UAVDB, infrared object detection on Anti-UAV, and pose estimation on GolfDB. Experimental results demonstrate that networks trained with ReynoldsFlow+ achieve state-of-the-art (SOTA) performance, exhibiting improved robustness and efficiency across all tasks.
* 10 pages, 3 figures, 3 tables
Via

Mar 06, 2025
Abstract:The Detection Transformer (DETR), by incorporating the Hungarian algorithm, has significantly simplified the matching process in object detection tasks. This algorithm facilitates optimal one-to-one matching of predicted bounding boxes to ground-truth annotations during training. While effective, this strict matching process does not inherently account for the varying densities and distributions of objects, leading to suboptimal correspondences such as failing to handle multiple detections of the same object or missing small objects. To address this, we propose the Regularized Transport Plan (RTP). RTP introduces a flexible matching strategy that captures the cost of aligning predictions with ground truths to find the most accurate correspondences between these sets. By utilizing the differentiable Sinkhorn algorithm, RTP allows for soft, fractional matching rather than strict one-to-one assignments. This approach enhances the model's capability to manage varying object densities and distributions effectively. Our extensive evaluations on the MS-COCO and VOC benchmarks demonstrate the effectiveness of our approach. RTP-DETR, surpassing the performance of the Deform-DETR and the recently introduced DINO-DETR, achieving absolute gains in mAP of +3.8% and +1.7%, respectively.
* ACMMM-2024
Via

Mar 06, 2025
Abstract:Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
* Submitted to IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2025
Via
