Abstract:Accurate position estimation is essential for modern navigation systems deployed in autonomous platforms, including ground vehicles, marine vessels, and aerial drones. In this context, Visual Simultaneous Localisation and Mapping (VSLAM) - which includes Visual Odometry - relies heavily on the reliable extraction of salient feature points from the visual input data. In this work, we propose an embedded implementation of an unsupervised architecture capable of detecting and describing feature points. It is based on a quantised SuperPoint convolutional neural network. Our objective is to minimise the computational demands of the model while preserving high detection quality, thus facilitating efficient deployment on platforms with limited resources, such as mobile or embedded systems. We implemented the solution on an FPGA System-on-Chip (SoC) platform, specifically the AMD/Xilinx Zynq UltraScale+, where we evaluated the performance of Deep Learning Processing Units (DPUs) and we also used the Brevitas library and the FINN framework to perform model quantisation and hardware-aware optimisation. This allowed us to process 640 x 480 pixel images at up to 54 fps on an FPGA platform, outperforming state-of-the-art solutions in the field. We conducted experiments on the TUM dataset to demonstrate and discuss the impact of different quantisation techniques on the accuracy and performance of the model in a visual odometry task.
Abstract:The field of neuromorphic vision is developing rapidly, and event cameras are finding their way into more and more applications. However, the data stream from these sensors is characterised by significant noise. In this paper, we propose a method for event data that is capable of removing approximately 99\% of noise while preserving the majority of the valid signal. We have proposed four algorithms based on the matrix of infinite impulse response (IIR) filters method. We compared them on several event datasets that were further modified by adding artificially generated noise and noise recorded with dynamic vision sensor. The proposed methods use about 30KB of memory for a sensor with a resolution of 1280 x 720 and is therefore well suited for implementation in embedded devices.
Abstract:In recent years, there has been rapid development in the field of event vision. It manifests itself both on the technical side, as better and better event sensors are available, and on the algorithmic side, as more and more applications of this technology are proposed and scientific papers are published. However, the data stream from these sensors typically contains a significant amount of noise, which varies depending on factors such as the degree of illumination in the observed scene or the temperature of the sensor. We propose a hardware architecture of the Distance-based Interpolation with Frequency Weights (DIF) filter and implement it on an FPGA chip. To evaluate the algorithm and compare it with other solutions, we have prepared a new high-resolution event dataset, which we are also releasing to the community. Our architecture achieved a throughput of 403.39 million events per second (MEPS) for a sensor resolution of 1280 x 720 and 428.45 MEPS for a resolution of 640 x 480. The average values of the Area Under the Receiver Operating Characteristic (AUROC) index ranged from 0.844 to 0.999, depending on the dataset, which is comparable to the state-of-the-art filtering solutions, but with much higher throughput and better operation over a wide range of noise levels.
Abstract:Event-based sensors offer significant advantages over traditional frame-based cameras, especially in scenarios involving rapid motion or challenging lighting conditions. However, event data frequently suffers from considerable noise, negatively impacting the performance and robustness of deep learning models. Traditionally, this problem has been addressed by applying filtering algorithms to the event stream, but this may also remove some of relevant data. In this paper, we propose a novel noise-injection training methodology designed to enhance the neural networks robustness against varying levels of event noise. Our approach introduces controlled noise directly into the training data, enabling models to learn noise-resilient representations. We have conducted extensive evaluations of the proposed method using multiple benchmark datasets (N-Caltech101, N-Cars, and Mini N-ImageNet) and various network architectures, including Convolutional Neural Networks, Vision Transformers, Spiking Neural Networks, and Graph Convolutional Networks. Experimental results show that our noise-injection training strategy achieves stable performance over a range of noise intensities, consistently outperforms event-filtering techniques, and achieves the highest average classification accuracy, making it a viable alternative to traditional event-data filtering methods in an object classification system. Code: https://github.com/vision-agh/DVS_Filtering
Abstract:Event cameras offer significant advantages over traditional frame-based sensors. These include microsecond temporal resolution, robustness under varying lighting conditions and low power consumption. Nevertheless, the effective processing of their sparse, asynchronous event streams remains challenging. Existing approaches to this problem can be categorised into two distinct groups. The first group involves the direct processing of event data with neural models, such as Spiking Neural Networks or Graph Convolutional Neural Networks. However, this approach is often accompanied by a compromise in terms of qualitative performance. The second group involves the conversion of events into dense representations with handcrafted aggregation functions, which can boost accuracy at the cost of temporal fidelity. This paper introduces a novel Self-Supervised Event Representation (SSER) method leveraging Gated Recurrent Unit (GRU) networks to achieve precise per-pixel encoding of event timestamps and polarities without temporal discretisation. The recurrent layers are trained in a self-supervised manner to maximise the fidelity of event-time encoding. The inference is performed with event representations generated asynchronously, thus ensuring compatibility with high-throughput sensors. The experimental validation demonstrates that SSER outperforms aggregation-based baselines, achieving improvements of 2.4% mAP and 0.6% on the Gen1 and 1 Mpx object detection datasets. Furthermore, the paper presents the first hardware implementation of recurrent representation for event data on a System-on-Chip FPGA, achieving sub-microsecond latency and power consumption between 1-2 W, suitable for real-time, power-efficient applications. Code is available at https://github.com/vision-agh/RecRepEvent.
Abstract:Multi-object tracking (MOT) is one of the most important problems in computer vision and a key component of any vision-based perception system used in advanced autonomous mobile robotics. Therefore, its implementation on low-power and real-time embedded platforms is highly desirable. Modern MOT algorithms should be able to track objects of a given class (e.g. people or vehicles). In addition, the number of objects to be tracked is not known in advance, and they may appear and disappear at any time, as well as be obscured. For these reasons, the most popular and successful approaches have recently been based on the tracking paradigm. Therefore, the presence of a high quality object detector is essential, which in practice accounts for the vast majority of the computational and memory complexity of the whole MOT system. In this paper, we propose an FPGA (Field-Programmable Gate Array) implementation of an embedded MOT system based on a quantized YOLOv8 detector and the SORT (Simple Online Realtime Tracker) tracker. We use a modified version of the FINN framework to utilize external memory for model parameters and to support operations necessary required by YOLOv8. We discuss the evaluation of detection and tracking performance using the COCO and MOT15 datasets, where we achieve 0.21 mAP and 38.9 MOTA respectively. As the computational platform, we use an MPSoC system (Zynq UltraScale+ device from AMD/Xilinx) where the detector is deployed in reprogrammable logic and the tracking algorithm is implemented in the processor system.
Abstract:The use of unmanned aerial vehicles (UAVs) for smart agriculture is becoming increasingly popular. This is evidenced by recent scientific works, as well as the various competitions organised on this topic. Therefore, in this work we present a system for automatic fruit counting using UAVs. To detect them, our solution uses a vision algorithm that processes streams from an RGB camera and a depth sensor using classical image operations. Our system also allows the planning and execution of flight trajectories, taking into account the minimisation of flight time and distance covered. We tested the proposed solution in simulation and obtained an average score of 87.27/100 points from a total of 500 missions. We also submitted it to the UAV Competition organised as part of the ICUAS 2024 conference, where we achieved an average score of 84.83/100 points, placing 6th in a field of 23 teams and advancing to the finals.
Abstract:As the quantities of data recorded by embedded edge sensors grow, so too does the need for intelligent local processing. Such data often comes in the form of time-series signals, based on which real-time predictions can be made locally using an AI model. However, a hardware-software approach capable of making low-latency predictions with low power consumption is required. In this paper, we present a hardware implementation of an event-graph neural network for time-series classification. We leverage an artificial cochlea model to convert the input time-series signals into a sparse event-data format that allows the event-graph to drastically reduce the number of calculations relative to other AI methods. We implemented the design on a SoC FPGA and applied it to the real-time processing of the Spiking Heidelberg Digits (SHD) dataset to benchmark our approach against competitive solutions. Our method achieves a floating-point accuracy of 92.7% on the SHD dataset for the base model, which is only 2.4% and 2% less than the state-of-the-art models with over 10% and 67% fewer model parameters, respectively. It also outperforms FPGA-based spiking neural network implementations by 19.3% and 4.5%, achieving 92.3% accuracy for the quantised model while using fewer computational resources and reducing latency.
Abstract:This paper presents LiFT, a lightweight, fully quantized 3D object detection algorithm for LiDAR data, optimized for real-time inference on FPGA platforms. Through an in-depth analysis of FPGA-specific limitations, we identify a set of FPGA-induced constraints that shape the algorithm's design. These include a computational complexity limit of 30 GMACs (billion multiply-accumulate operations), INT8 quantization for weights and activations, 2D cell-based processing instead of 3D voxels, and minimal use of skip connections. To meet these constraints while maximizing performance, LiFT combines novel mechanisms with state-of-the-art techniques such as reparameterizable convolutions and fully sparse architecture. Key innovations include the Dual-bound Pillar Feature Net, which boosts performance without increasing complexity, and an efficient scheme for INT8 quantization of input features. With a computational cost of just 20.73 GMACs, LiFT stands out as one of the few algorithms targeting minimal-complexity 3D object detection. Among comparable methods, LiFT ranks first, achieving an mAP of 51.84% and an NDS of 61.01% on the challenging NuScenes validation dataset. The code will be available at https://github.com/vision-agh/lift.
Abstract:Nowadays, the increasing demand for maintaining high cleanliness standards in public spaces results in the search for innovative solutions. The deployment of CCTV systems equipped with modern cameras and software enables not only real-time monitoring of the cleanliness status but also automatic detection of impurities and optimisation of cleaning schedules. The Digital Twin technology allows for the creation of a virtual model of the space, facilitating the simulation, training, and testing of cleanliness management strategies before implementation in the real world. In this paper, we present the utilisation of advanced vision surveillance systems and the Digital Twin technology in cleanliness management, using a railway station as an example. The Digital Twin was created based on an actual 3D model in the Nvidia Omniverse Isaac Sim simulator. A litter detector, bin occupancy level detector, stain segmentation, and a human detector (including the cleaning crew) along with their movement analysis were implemented. A preliminary assessment was conducted, and potential modifications for further enhancement and future development of the system were identified.