Abstract:Nowadays, the increasing demand for maintaining high cleanliness standards in public spaces results in the search for innovative solutions. The deployment of CCTV systems equipped with modern cameras and software enables not only real-time monitoring of the cleanliness status but also automatic detection of impurities and optimisation of cleaning schedules. The Digital Twin technology allows for the creation of a virtual model of the space, facilitating the simulation, training, and testing of cleanliness management strategies before implementation in the real world. In this paper, we present the utilisation of advanced vision surveillance systems and the Digital Twin technology in cleanliness management, using a railway station as an example. The Digital Twin was created based on an actual 3D model in the Nvidia Omniverse Isaac Sim simulator. A litter detector, bin occupancy level detector, stain segmentation, and a human detector (including the cleaning crew) along with their movement analysis were implemented. A preliminary assessment was conducted, and potential modifications for further enhancement and future development of the system were identified.
Abstract:Deep reinforcement learning (DRL) is currently the most popular AI-based approach to autonomous vehicle control. An agent, trained for this purpose in simulation, can interact with the real environment with a human-level performance. Despite very good results in terms of selected metrics, this approach has some significant drawbacks: high computational requirements and low explainability. Because of that, a DRL-based agent cannot be used in some control tasks, especially when safety is the key issue. Therefore we propose to use Tangled Program Graphs (TPGs) as an alternative for deep reinforcement learning in control-related tasks. In this approach, input signals are processed by simple programs that are combined in a graph structure. As a result, TPGs are less computationally demanding and their actions can be explained based on the graph structure. In this paper, we present our studies on the use of TPGs as an alternative for DRL in control-related tasks. In particular, we consider the problem of navigating an unmanned aerial vehicle (UAV) through the unknown environment based solely on the on-board LiDAR sensor. The results of our work show promising prospects for the use of TPGs in control related-tasks.
Abstract:Event cameras are becoming increasingly popular as an alternative to traditional frame-based vision sensors, especially in mobile robotics. Taking full advantage of their high temporal resolution, high dynamic range, low power consumption and sparsity of event data, which only reflects changes in the observed scene, requires both an efficient algorithm and a specialised hardware platform. A recent trend involves using Graph Convolutional Neural Networks (GCNNs) implemented on a heterogeneous SoC FPGA. In this paper we focus on optimising hardware modules for graph convolution to allow flexible selection of the FPGA resource (BlockRAM, DSP and LUT) for their implementation. We propose a ''two-step convolution'' approach that utilises additional BRAM buffers in order to reduce up to 94% of LUT usage for multiplications. This method significantly improves the scalability of GCNNs, enabling the deployment of models with more layers, larger graphs sizes and their application for more dynamic scenarios.
Abstract:In recent years there has been a growing interest in event cameras, i.e. vision sensors that record changes in illumination independently for each pixel. This type of operation ensures that acquisition is possible in very adverse lighting conditions, both in low light and high dynamic range, and reduces average power consumption. In addition, the independent operation of each pixel results in low latency, which is desirable for robotic solutions. Nowadays, Field Programmable Gate Arrays (FPGAs), along with general-purpose processors (GPPs/CPUs) and programmable graphics processing units (GPUs), are popular architectures for implementing and accelerating computing tasks. In particular, their usefulness in the embedded vision domain has been repeatedly demonstrated over the past 30 years, where they have enabled fast data processing (even in real-time) and energy efficiency. Hence, the combination of event cameras and reconfigurable devices seems to be a good solution, especially in the context of energy-efficient real-time embedded systems. This paper gives an overview of the most important works, where FPGAs have been used in different contexts to process event data. It covers applications in the following areas: filtering, stereovision, optical flow, acceleration of AI-based algorithms (including spiking neural networks) for object classification, detection and tracking, and applications in robotics and inspection systems. Current trends and challenges for such systems are also discussed.
Abstract:The performance of object detection systems in automotive solutions must be as high as possible, with minimal response time and, due to the often battery-powered operation, low energy consumption. When designing such solutions, we therefore face challenges typical for embedded vision systems: the problem of fitting algorithms of high memory and computational complexity into small low-power devices. In this paper we propose PowerYOLO - a mixed precision solution, which targets three essential elements of such application. First, we propose a system based on a Dynamic Vision Sensor (DVS), a novel sensor, that offers low power requirements and operates well in conditions with variable illumination. It is these features that may make event cameras a preferential choice over frame cameras in some applications. Second, to ensure high accuracy and low memory and computational complexity, we propose to use 4-bit width Powers-of-Two (PoT) quantisation for convolution weights of the YOLO detector, with all other parameters quantised linearly. Finally, we embrace from PoT scheme and replace multiplication with bit-shifting to increase the efficiency of hardware acceleration of such solution, with a special convolution-batch normalisation fusion scheme. The use of specific sensor with PoT quantisation and special batch normalisation fusion leads to a unique system with almost 8x reduction in memory complexity and vast computational simplifications, with relation to a standard approach. This efficient system achieves high accuracy of mAP 0.301 on the GEN1 DVS dataset, marking the new state-of-the-art for such compressed model.
Abstract:The utilisation of event cameras represents an important and swiftly evolving trend aimed at addressing the constraints of traditional video systems. Particularly within the automotive domain, these cameras find significant relevance for their integration into embedded real-time systems due to lower latency and energy consumption. One effective approach to ensure the necessary throughput and latency for event processing systems is through the utilisation of graph convolutional networks (GCNs). In this study, we introduce a series of hardware-aware optimisations tailored for PointNet++, a GCN architecture designed for point cloud processing. The proposed techniques result in more than a 100-fold reduction in model size compared to Asynchronous Event-based GNN (AEGNN), one of the most recent works in the field, with a relatively small decrease in accuracy (2.3% for N-Caltech101 classification, 1.7% for N-Cars classification), thus following the TinyML trend. Based on software research, we designed a custom EFGCN (Event-Based FPGA-accelerated Graph Convolutional Network) and we implemented it on ZCU104 SoC FPGA platform, achieving a throughput of 13.3 million events per second (MEPS) and real-time partially asynchronous processing with a latency of 4.47 ms. We also address the scalability of the proposed hardware model to improve the obtained accuracy score. To the best of our knowledge, this study marks the first endeavour in accelerating PointNet++ networks on SoC FPGAs, as well as the first hardware architecture exploration of graph convolutional networks implementation for real-time continuous event data processing. We publish both software and hardware source code in an open repository: https://github.com/vision-agh/*** (will be published upon acceptance).
Abstract:Event-based vision is an emerging research field involving processing data generated by Dynamic Vision Sensors (neuromorphic cameras). One of the latest proposals in this area are Graph Convolutional Networks (GCNs), which allow to process events in its original sparse form while maintaining high detection and classification performance. In this paper, we present the hardware implementation of a~graph generation process from an event camera data stream, taking into account both the advantages and limitations of FPGAs. We propose various ways to simplify the graph representation and use scaling and quantisation of values. We consider both undirected and directed graphs that enable the use of PointNet convolution. The results obtained show that by appropriately modifying the graph representation, it is possible to create a~hardware module for graph generation. Moreover, the proposed modifications have no significant impact on object detection performance, only 0.08% mAP less for the base model and the N-Caltech data set.Finally, we describe the proposed hardware architecture of the graph generation module.
Abstract:In this paper we have addressed the implementation of the accumulation and projection of high-resolution event data stream (HD -1280 x 720 pixels) onto the image plane in FPGA devices. The results confirm the feasibility of this approach, but there are a number of challenges, limitations and trade-offs to be considered. The required hardware resources of selected data representations, such as binary frame, event frame, exponentially decaying time surface and event frequency, were compared with those available on several popular platforms from AMD Xilinx. The resulting event frames can be used for typical vision algorithms, such as object classification and detection, using both classical and deep neural network methods.
Abstract:Reinforcement learning is of increasing importance in the field of robot control and simulation plays a~key role in this process. In the unmanned aerial vehicles (UAVs, drones), there is also an increase in the number of published scientific papers involving this approach. In this work, an autonomous drone control system was prepared to fly forward (according to its coordinates system) and pass the trees encountered in the forest based on the data from a rotating LiDAR sensor. The Proximal Policy Optimization (PPO) algorithm, an example of reinforcement learning (RL), was used to prepare it. A custom simulator in the Python language was developed for this purpose. The Gazebo environment, integrated with the Robot Operating System (ROS), was also used to test the resulting control algorithm. Finally, the prepared solution was implemented in the Nvidia Jetson Nano eGPU and verified in the real tests scenarios. During them, the drone successfully completed the set task and was able to repeatably avoid trees and fly through the forest.
Abstract:Recent advances in event camera research emphasize processing data in its original sparse form, which allows the use of its unique features such as high temporal resolution, high dynamic range, low latency, and resistance to image blur. One promising approach for analyzing event data is through graph convolutional networks (GCNs). However, current research in this domain primarily focuses on optimizing computational costs, neglecting the associated memory costs. In this paper, we consider both factors together in order to achieve satisfying results and relatively low model complexity. For this purpose, we performed a comparative analysis of different graph convolution operations, considering factors such as execution time, the number of trainable model parameters, data format requirements, and training outcomes. Our results show a 450-fold reduction in the number of parameters for the feature extraction module and a 4.5-fold reduction in the size of the data representation while maintaining a classification accuracy of 52.3%, which is 6.3% higher compared to the operation used in state-of-the-art approaches. To further evaluate performance, we implemented the object detection architecture and evaluated its performance on the N-Caltech101 dataset. The results showed an accuracy of 53.7 % mAP@0.5 and reached an execution rate of 82 graphs per second.