Abstract:Human preference alignment can greatly enhance Multimodal Large Language Models (MLLMs), but collecting high-quality preference data is costly. A promising solution is the self-evolution strategy, where models are iteratively trained on data they generate. However, current techniques still rely on human- or GPT-annotated data and sometimes require additional models or ground truth answers. To address these issues, we propose a novel multimodal self-evolution framework that enables the model to autonomously generate high-quality questions and answers using only unannotated images. First, we implement an image-driven self-questioning mechanism, allowing the model to create and evaluate questions based on image content, regenerating them if they are irrelevant or unanswerable. This sets a strong foundation for answer generation. Second, we introduce an answer self-enhancement technique, starting with image captioning to improve answer quality. We also use corrupted images to generate rejected answers, forming distinct preference pairs for optimization. Finally, we incorporate an image content alignment loss function alongside Direct Preference Optimization (DPO) loss to reduce hallucinations, ensuring the model focuses on image content. Experiments show that our framework performs competitively with methods using external information, offering a more efficient and scalable approach to MLLMs.
Abstract:Fine-tuning is powerful for adapting large language models to downstream tasks, but it often results in huge memory usages. A promising approach to mitigate this is using Zeroth-Order (ZO) optimization, which estimates gradients to replace First-Order (FO) gradient calculations, albeit with longer training time due to its stochastic nature. By revisiting the Memory-efficient ZO (MeZO) optimizer, we discover that the full-parameter perturbation and updating processes consume over 50% of its overall fine-tuning time cost. Based on these observations, we introduce a novel layer-wise sparse computation and memory efficient ZO optimizer, named LeZO. LeZO treats layers as fundamental units for sparsification and dynamically perturbs different parameter subsets in each step to achieve full-parameter fine-tuning. LeZO incorporates layer-wise parameter sparsity in the process of simultaneous perturbation stochastic approximation (SPSA) and ZO stochastic gradient descent (ZO-SGD). It achieves accelerated computation during perturbation and updating processes without additional memory overhead. We conduct extensive experiments with the OPT model family on the SuperGLUE benchmark and two generative tasks. The experiments show that LeZO accelerates training without compromising the performance of ZO optimization. Specifically, it achieves over 3x speedup compared to MeZO on the SST-2, BoolQ, and Copa tasks.
Abstract:Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
Abstract:Detecting human-object interaction (HOI) has long been limited by the amount of supervised data available. Recent approaches address this issue by pre-training according to pseudo-labels, which align object regions with HOI triplets parsed from image captions. However, pseudo-labeling is tricky and noisy, making HOI pre-training a complex process. Therefore, we propose an efficient disentangled pre-training method for HOI detection (DP-HOI) to address this problem. First, DP-HOI utilizes object detection and action recognition datasets to pre-train the detection and interaction decoder layers, respectively. Then, we arrange these decoder layers so that the pre-training architecture is consistent with the downstream HOI detection task. This facilitates efficient knowledge transfer. Specifically, the detection decoder identifies reliable human instances in each action recognition dataset image, generates one corresponding query, and feeds it into the interaction decoder for verb classification. Next, we combine the human instance verb predictions in the same image and impose image-level supervision. The DP-HOI structure can be easily adapted to the HOI detection task, enabling effective model parameter initialization. Therefore, it significantly enhances the performance of existing HOI detection models on a broad range of rare categories. The code and pre-trained weight are available at https://github.com/xingaoli/DP-HOI.
Abstract:Image-based virtual try-on is an increasingly important task for online shopping. It aims to synthesize images of a specific person wearing a specified garment. Diffusion model-based approaches have recently become popular, as they are excellent at image synthesis tasks. However, these approaches usually employ additional image encoders and rely on the cross-attention mechanism for texture transfer from the garment to the person image, which affects the try-on's efficiency and fidelity. To address these issues, we propose an Texture-Preserving Diffusion (TPD) model for virtual try-on, which enhances the fidelity of the results and introduces no additional image encoders. Accordingly, we make contributions from two aspects. First, we propose to concatenate the masked person and reference garment images along the spatial dimension and utilize the resulting image as the input for the diffusion model's denoising UNet. This enables the original self-attention layers contained in the diffusion model to achieve efficient and accurate texture transfer. Second, we propose a novel diffusion-based method that predicts a precise inpainting mask based on the person and reference garment images, further enhancing the reliability of the try-on results. In addition, we integrate mask prediction and image synthesis into a single compact model. The experimental results show that our approach can be applied to various try-on tasks, e.g., garment-to-person and person-to-person try-ons, and significantly outperforms state-of-the-art methods on popular VITON, VITON-HD databases.
Abstract:This paper addresses the problem of generating lifelike holistic co-speech motions for 3D avatars, focusing on two key aspects: variability and coordination. Variability allows the avatar to exhibit a wide range of motions even with similar speech content, while coordination ensures a harmonious alignment among facial expressions, hand gestures, and body poses. We aim to achieve both with ProbTalk, a unified probabilistic framework designed to jointly model facial, hand, and body movements in speech. ProbTalk builds on the variational autoencoder (VAE) architecture and incorporates three core designs. First, we introduce product quantization (PQ) to the VAE, which enriches the representation of complex holistic motion. Second, we devise a novel non-autoregressive model that embeds 2D positional encoding into the product-quantized representation, thereby preserving essential structure information of the PQ codes. Last, we employ a secondary stage to refine the preliminary prediction, further sharpening the high-frequency details. Coupling these three designs enables ProbTalk to generate natural and diverse holistic co-speech motions, outperforming several state-of-the-art methods in qualitative and quantitative evaluations, particularly in terms of realism. Our code and model will be released for research purposes at https://feifeifeiliu.github.io/probtalk/.
Abstract:Rotation invariance is an important requirement for point shape analysis. To achieve this, current state-of-the-art methods attempt to construct the local rotation-invariant representation through learning or defining the local reference frame (LRF). Although efficient, these LRF-based methods suffer from perturbation of local geometric relations, resulting in suboptimal local rotation invariance. To alleviate this issue, we propose a Local-consistent Transformation (LocoTrans) learning strategy. Specifically, we first construct the local-consistent reference frame (LCRF) by considering the symmetry of the two axes in LRF. In comparison with previous LRFs, our LCRF is able to preserve local geometric relationships better through performing local-consistent transformation. However, as the consistency only exists in local regions, the relative pose information is still lost in the intermediate layers of the network. We mitigate such a relative pose issue by developing a relative pose recovery (RPR) module. RPR aims to restore the relative pose between adjacent transformed patches. Equipped with LCRF and RPR, our LocoTrans is capable of learning local-consistent transformation and preserving local geometry, which benefits rotation invariance learning. Competitive performance under arbitrary rotations on both shape classification and part segmentation tasks and ablations can demonstrate the effectiveness of our method. Code will be available publicly at https://github.com/wdttt/LocoTrans.
Abstract:Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
Abstract:Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference. One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels. However, its performance is significantly affected by noisy pseudo-labels. This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise. To address this issue, we propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation. First, we decouple the optimization of class prototypes. For each class prototype, we reduce its distance with positive samples and enlarge its distance with negative samples in a contrastive manner. This strategy prevents the model from overfitting to noisy pseudo-labels. Second, we propose a memory-based strategy to enhance DPL's robustness for the small batch sizes often encountered in TTA. We update each class's pseudo-feature from a memory in a momentum manner and insert an additional DPL loss. Finally, we introduce a consistency regularization-based approach to leverage samples with unconfident pseudo-labels. This approach transfers feature styles of samples with unconfident pseudo-labels to those with confident pseudo-labels. Thus, more reliable samples for TTA are created. The experimental results demonstrate that our methods achieve state-of-the-art performance on domain generalization benchmarks, and reliably improve the performance of self-training-based methods on image corruption benchmarks. The code will be released.
Abstract:Human-Object Interaction (HOI) detection is a core task for human-centric image understanding. Recent one-stage methods adopt a transformer decoder to collect image-wide cues that are useful for interaction prediction; however, the interaction representations obtained using this method are entangled and lack interpretability. In contrast, traditional two-stage methods benefit significantly from their ability to compose interaction features in a disentangled and explainable manner. In this paper, we improve the performance of one-stage methods by enabling them to extract disentangled interaction representations. First, we propose Shunted Cross-Attention (SCA) to extract human appearance, object appearance, and global context features using different cross-attention heads. This is achieved by imposing different masks on the cross-attention maps produced by the different heads. Second, we introduce the Interaction-aware Pose Estimation (IPE) task to learn interaction-relevant human pose features using a disentangled decoder. This is achieved with a novel attention module that accurately captures the human keypoints relevant to the current interaction category. Finally, our approach fuses the appearance feature and pose feature via element-wise addition to form the interaction representation. Experimental results show that our approach can be readily applied to existing one-stage HOI detectors. Moreover, we achieve state-of-the-art performance on two benchmarks: HICO-DET and V-COCO.