Multivariate time series forecasting is the process of predicting future values of multiple time series data.
Multivariate time series (MTS) forecasting is crucial for decision-making in domains such as weather, energy, and finance. It remains challenging because real-world sequences intertwine slow trends, multi-rate seasonalities, and irregular residuals. Existing methods often rely on rigid, hand-crafted decompositions or generic end-to-end architectures that entangle components and underuse structure shared across variables. To address these limitations, we propose DecompSSM, an end-to-end decomposition framework using three parallel deep state space model branches to capture trend, seasonal, and residual components. The model features adaptive temporal scales via an input-dependent predictor, a refinement module for shared cross-variable context, and an auxiliary loss that enforces reconstruction and orthogonality. Across standard benchmarks (ECL, Weather, ETTm2, and PEMS04), DecompSSM outperformed strong baselines, indicating the effectiveness of combining component-wise deep state space models and global context refinement.
Multivariate time series forecasting in graph-structured domains is critical for real-world applications, yet existing spatiotemporal models often suffer from performance degradation under data scarcity and cross-domain shifts. We address these challenges through the lens of structure-aware context selection. We propose TL-GPSTGN, a transfer-oriented spatiotemporal framework that enhances sample efficiency and out-of-distribution generalization by selectively pruning non-optimized graph context. Specifically, our method employs information-theoretic and correlation-based criteria to extract structurally informative subgraphs and features, resulting in a compact, semantically grounded representation. This optimized context is subsequently integrated into a spatiotemporal convolutional architecture to capture complex multivariate dynamics. Evaluations on large-scale traffic benchmarks demonstrate that TL-GPSTGN consistently outperforms baselines in low-data transfer scenarios. Our findings suggest that explicit context pruning serves as a powerful inductive bias for improving the robustness of graph-based forecasting models.
Long-term multivariate time series forecasting (LTSF) plays a crucial role in various high-performance computing applications, including real-time energy grid management and large-scale traffic flow simulation. However, existing solutions face a dilemma: Transformer-based models suffer from quadratic complexity, limiting their scalability on long sequences, while linear State Space Models (SSMs) often struggle to distinguish valuable signals from high-frequency noise, leading to wasted state capacity. To bridge this gap, we propose ASGMamba, an efficient forecasting framework designed for resource-constrained supercomputing environments. ASGMamba integrates a lightweight Adaptive Spectral Gating (ASG) mechanism that dynamically filters noise based on local spectral energy, enabling the Mamba backbone to focus its state evolution on robust temporal dynamics. Furthermore, we introduce a hierarchical multi-scale architecture with variable-specific Node Embeddings to capture diverse physical characteristics. Extensive experiments on nine benchmarks demonstrate that ASGMamba achieves state-of-the-art accuracy. While keeping strictly $$\mathcal{O}(L)$$ complexity we significantly reduce the memory usage on long-horizon tasks, thus establishing ASGMamba as a scalable solution for high-throughput forecasting in resource limited environments.The code is available at https://github.com/hit636/ASGMamba
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
Irregular multivariate time series forecasting (IMTSF) is challenging due to non-uniform sampling and variable asynchronicity. These irregularities violate the equidistant assumptions of standard models, hindering local temporal modeling and rendering classical frequency-domain methods ineffective for capturing global periodic structures. To address this challenge, we propose TFMixer, a joint time-frequency modeling framework for IMTS forecasting. Specifically, TFMixer incorporates a Global Frequency Module that employs a learnable Non-Uniform Discrete Fourier Transform (NUDFT) to directly extract spectral representations from irregular timestamps. In parallel, the Local Time Module introduces a query-based patch mixing mechanism to adaptively aggregate informative temporal patches and alleviate information density imbalance. Finally, TFMixer fuses the time-domain and frequency-domain representations to generate forecasts and further leverages inverse NUDFT for explicit seasonal extrapolation. Extensive experiments on real-world datasets demonstrate the state--of-the-art performance of TFMixer.
Hyperparameter optimization (HPO) plays a central role in the performance of deep learning models, yet remains computationally expensive and difficult to interpret, particularly for time-series forecasting. While Bayesian Optimization (BO) is a standard approach, it typically treats tuning tasks independently and provides limited insight into its decisions. Recent advances in large language models (LLMs) offer new opportunities to incorporate structured prior knowledge and reasoning into optimization pipelines. We introduce LLM-AutoOpt, a hybrid HPO framework that combines BO with LLM-based contextual reasoning. The framework encodes dataset meta-features, model descriptions, historical optimization outcomes, and target objectives as structured meta-knowledge within LLM prompts, using BO to initialize the search and mitigate cold-start effects. This design enables context-aware and stable hyperparameter refinement while exposing the reasoning behind optimization decisions. Experiments on a multivariate time series forecasting benchmark demonstrate that LLM-AutoOpt achieves improved predictive performance and more interpretable optimization behavior compared to BO and LLM baselines without meta-knowledge.
While existing multivariate time series forecasting models have advanced significantly in modeling periodicity, they largely neglect the periodic heterogeneity common in real-world data, where variates exhibit distinct and dynamically changing periods. To effectively capture this periodic heterogeneity, we propose PHAT (Period Heterogeneity-Aware Transformer). Specifically, PHAT arranges multivariate inputs into a three-dimensional "periodic bucket" tensor, where the dimensions correspond to variate group characteristics with similar periodicity, time steps aligned by phase, and offsets within the period. By restricting interactions within buckets and masking cross-bucket connections, PHAT effectively avoids interference from inconsistent periods. We also propose a positive-negative attention mechanism, which captures periodic dependencies from two perspectives: periodic alignment and periodic deviation. Additionally, the periodic alignment attention scores are decomposed into positive and negative components, with a modulation term encoding periodic priors. This modulation constrains the attention mechanism to more faithfully reflect the underlying periodic trends. A mathematical explanation is provided to support this property. We evaluate PHAT comprehensively on 14 real-world datasets against 18 baselines, and the results show that it significantly outperforms existing methods, achieving highly competitive forecasting performance. Our sources is available at GitHub.
Multivariate long-term time series forecasting (LTSF) supports critical applications such as traffic-flow management, solar-power scheduling, and electricity-transformer monitoring. The existing LTSF paradigms follow a three-stage pipeline of embedding, backbone refinement, and long-horizon prediction. However, the behaviors of individual backbone layers remain underexplored. We introduce layer sensitivity, a gradient-based metric inspired by GradCAM and effective receptive field theory, which quantifies both positive and negative contributions of each time point to a layer's latent features. Applying this metric to a three-layer MLP backbone reveals depth-specific specialization in modeling temporal dynamics in the input sequence. Motivated by these insights, we propose MoDEx, a lightweight Mixture of Depth-specific Experts, which replaces complex backbones with depth-specific MLP experts. MoDEx achieves state-of-the-art accuracy on seven real-world benchmarks, ranking first in 78 percent of cases, while using significantly fewer parameters and computational resources. It also integrates seamlessly into transformer variants, consistently boosting their performance and demonstrating robust generalizability as an efficient and high-performance LTSF framework.
Current methods for multivariate time series forecasting can be classified into channel-dependent and channel-independent models. Channel-dependent models learn cross-channel features but often overfit the channel ordering, which hampers adaptation when channels are added or reordered. Channel-independent models treat each channel in isolation to increase flexibility, yet this neglects inter-channel dependencies and limits performance. To address these limitations, we propose \textbf{CPiRi}, a \textbf{channel permutation invariant (CPI)} framework that infers cross-channel structure from data rather than memorizing a fixed ordering, enabling deployment in settings with structural and distributional co-drift without retraining. CPiRi couples \textbf{spatio-temporal decoupling architecture} with \textbf{permutation-invariant regularization training strategy}: a frozen pretrained temporal encoder extracts high-quality temporal features, a lightweight spatial module learns content-driven inter-channel relations, while a channel shuffling strategy enforces CPI during training. We further \textbf{ground CPiRi in theory} by analyzing permutation equivariance in multivariate time series forecasting. Experiments on multiple benchmarks show state-of-the-art results. CPiRi remains stable when channel orders are shuffled and exhibits strong \textbf{inductive generalization} to unseen channels even when trained on \textbf{only half} of the channels, while maintaining \textbf{practical efficiency} on large-scale datasets. The source code is released at https://github.com/JasonStraka/CPiRi.
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by $12\%$ compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.