Abstract:Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at \href{https://qiushisun.github.io/OS-Genesis-Home/}{OS-Genesis Homepage}.
Abstract:Autonomous interaction with the computer has been a longstanding challenge with great potential, and the recent proliferation of large language models (LLMs) has markedly accelerated progress in building digital agents. However, most of these agents are designed to interact with a narrow domain, such as a specific software or website. This narrow focus constrains their applicability for general computer tasks. To this end, we introduce OS-Copilot, a framework to build generalist agents capable of interfacing with comprehensive elements in an operating system (OS), including the web, code terminals, files, multimedia, and various third-party applications. We use OS-Copilot to create FRIDAY, a self-improving embodied agent for automating general computer tasks. On GAIA, a general AI assistants benchmark, FRIDAY outperforms previous methods by 35%, showcasing strong generalization to unseen applications via accumulated skills from previous tasks. We also present numerical and quantitative evidence that FRIDAY learns to control and self-improve on Excel and Powerpoint with minimal supervision. Our OS-Copilot framework and empirical findings provide infrastructure and insights for future research toward more capable and general-purpose computer agents.
Abstract:Despite data's crucial role in machine learning, most existing tools and research tend to focus on systems on top of existing data rather than how to interpret and manipulate data. In this paper, we propose DataLab, a unified data-oriented platform that not only allows users to interactively analyze the characteristics of data, but also provides a standardized interface for different data processing operations. Additionally, in view of the ongoing proliferation of datasets, \toolname has features for dataset recommendation and global vision analysis that help researchers form a better view of the data ecosystem. So far, DataLab covers 1,715 datasets and 3,583 of its transformed version (e.g., hyponyms replacement), where 728 datasets support various analyses (e.g., with respect to gender bias) with the help of 140M samples annotated by 318 feature functions. DataLab is under active development and will be supported going forward. We have released a web platform, web API, Python SDK, PyPI published package and online documentation, which hopefully, can meet the diverse needs of researchers.