Abstract:Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to generate clearer images that are more visually pleasing to humans. However, the impact of LLIE methods in high-level vision tasks, such as image classification and object detection, which rely on high-quality image datasets, is not well {explored}. To explore the impact, we comprehensively evaluate LLIE methods on these high-level vision tasks by utilizing an empirical investigation comprising image classification and object detection experiments. The evaluation reveals a dichotomy: {\textit{While Low-Light Image Enhancement (LLIE) methods enhance human visual interpretation, their effect on computer vision tasks is inconsistent and can sometimes be harmful. }} Our findings suggest a disconnect between image enhancement for human visual perception and for machine analysis, indicating a need for LLIE methods tailored to support high-level vision tasks effectively. This insight is crucial for the development of LLIE techniques that align with the needs of both human and machine vision.
Abstract:Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.
Abstract:This paper focuses on a specific family of classifiers called nonparallel support vector classifiers (NPSVCs). Different from typical classifiers, the training of an NPSVC involves the minimization of multiple objectives, resulting in the potential concerns of feature suboptimality and class dependency. Consequently, no effective learning scheme has been established to improve NPSVCs' performance through representation learning, especially deep learning. To break this bottleneck, we develop NPSVC++ based on multi-objective optimization, enabling the end-to-end learning of NPSVC and its features. By pursuing Pareto optimality, NPSVC++ theoretically ensures feature optimality across classes, hence effectively overcoming the two issues above. A general learning procedure via duality optimization is proposed, based on which we provide two applicable instances, K-NPSVC++ and D-NPSVC++. The experiments show their superiority over the existing methods and verify the efficacy of NPSVC++.
Abstract:Fashion recommendation is a key research field in computational fashion research and has attracted considerable interest in the computer vision, multimedia, and information retrieval communities in recent years. Due to the great demand for applications, various fashion recommendation tasks, such as personalized fashion product recommendation, complementary (mix-and-match) recommendation, and outfit recommendation, have been posed and explored in the literature. The continuing research attention and advances impel us to look back and in-depth into the field for a better understanding. In this paper, we comprehensively review recent research efforts on fashion recommendation from a technological perspective. We first introduce fashion recommendation at a macro level and analyse its characteristics and differences with general recommendation tasks. We then clearly categorize different fashion recommendation efforts into several sub-tasks and focus on each sub-task in terms of its problem formulation, research focus, state-of-the-art methods, and limitations. We also summarize the datasets proposed in the literature for use in fashion recommendation studies to give readers a brief illustration. Finally, we discuss several promising directions for future research in this field. Overall, this survey systematically reviews the development of fashion recommendation research. It also discusses the current limitations and gaps between academic research and the real needs of the fashion industry. In the process, we offer a deep insight into how the fashion industry could benefit from fashion recommendation technologies. the computational technologies of fashion recommendation.
Abstract:Most facial landmark detection methods predict landmarks by mapping the input facial appearance features to landmark heatmaps and have achieved promising results. However, when the face image is suffering from large poses, heavy occlusions and complicated illuminations, they cannot learn discriminative feature representations and effective facial shape constraints, nor can they accurately predict the value of each element in the landmark heatmap, limiting their detection accuracy. To address this problem, we propose a novel Reference Heatmap Transformer (RHT) by introducing reference heatmap information for more precise facial landmark detection. The proposed RHT consists of a Soft Transformation Module (STM) and a Hard Transformation Module (HTM), which can cooperate with each other to encourage the accurate transformation of the reference heatmap information and facial shape constraints. Then, a Multi-Scale Feature Fusion Module (MSFFM) is proposed to fuse the transformed heatmap features and the semantic features learned from the original face images to enhance feature representations for producing more accurate target heatmaps. To the best of our knowledge, this is the first study to explore how to enhance facial landmark detection by transforming the reference heatmap information. The experimental results from challenging benchmark datasets demonstrate that our proposed method outperforms the state-of-the-art methods in the literature.
Abstract:Thanks to the efficient retrieval speed and low storage consumption, learning to hash has been widely used in visual retrieval tasks. However, existing hashing methods assume that the query and retrieval samples lie in homogeneous feature space within the same domain. As a result, they cannot be directly applied to heterogeneous cross-domain retrieval. In this paper, we propose a Generalized Image Transfer Retrieval (GITR) problem, which encounters two crucial bottlenecks: 1) the query and retrieval samples may come from different domains, leading to an inevitable {domain distribution gap}; 2) the features of the two domains may be heterogeneous or misaligned, bringing up an additional {feature gap}. To address the GITR problem, we propose an Asymmetric Transfer Hashing (ATH) framework with its unsupervised/semi-supervised/supervised realizations. Specifically, ATH characterizes the domain distribution gap by the discrepancy between two asymmetric hash functions, and minimizes the feature gap with the help of a novel adaptive bipartite graph constructed on cross-domain data. By jointly optimizing asymmetric hash functions and the bipartite graph, not only can knowledge transfer be achieved but information loss caused by feature alignment can also be avoided. Meanwhile, to alleviate negative transfer, the intrinsic geometrical structure of single-domain data is preserved by involving a domain affinity graph. Extensive experiments on both single-domain and cross-domain benchmarks under different GITR subtasks indicate the superiority of our ATH method in comparison with the state-of-the-art hashing methods.
Abstract:Current fully-supervised facial landmark detection methods have progressed rapidly and achieved remarkable performance. However, they still suffer when coping with faces under large poses and heavy occlusions for inaccurate facial shape constraints and insufficient labeled training samples. In this paper, we propose a semi-supervised framework, i.e., a Self-Calibrated Pose Attention Network (SCPAN) to achieve more robust and precise facial landmark detection in challenging scenarios. To be specific, a Boundary-Aware Landmark Intensity (BALI) field is proposed to model more effective facial shape constraints by fusing boundary and landmark intensity field information. Moreover, a Self-Calibrated Pose Attention (SCPA) model is designed to provide a self-learned objective function that enforces intermediate supervision without label information by introducing a self-calibrated mechanism and a pose attention mask. We show that by integrating the BALI fields and SCPA model into a novel self-calibrated pose attention network, more facial prior knowledge can be learned and the detection accuracy and robustness of our method for faces with large poses and heavy occlusions have been improved. The experimental results obtained for challenging benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in the literature.
Abstract:This work studies the problem of high-dimensional data (referred to as tensors) completion from partially observed samplings. We consider that a tensor is a superposition of multiple low-rank components. In particular, each component can be represented as multilinear connections over several latent factors and naturally mapped to a specific tensor network (TN) topology. In this paper, we propose a fundamental tensor decomposition (TD) framework: Multi-Tensor Network Representation (MTNR), which can be regarded as a linear combination of a range of TD models, e.g., CANDECOMP/PARAFAC (CP) decomposition, Tensor Train (TT), and Tensor Ring (TR). Specifically, MTNR represents a high-order tensor as the addition of multiple TN models, and the topology of each TN is automatically generated instead of manually pre-designed. For the optimization phase, an adaptive topology learning (ATL) algorithm is presented to obtain latent factors of each TN based on a rank incremental strategy and a projection error measurement strategy. In addition, we theoretically establish the fundamental multilinear operations for the tensors with TN representation, and reveal the structural transformation of MTNR to a single TN. Finally, MTNR is applied to a typical task, tensor completion, and two effective algorithms are proposed for the exact recovery of incomplete data based on the Alternating Least Squares (ALS) scheme and Alternating Direction Method of Multiplier (ADMM) framework. Extensive numerical experiments on synthetic data and real-world datasets demonstrate the effectiveness of MTNR compared with the start-of-the-art methods.
Abstract:Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, we try to integrate CNNs with wavelet by replacing the common down-sampling (max-pooling, strided-convolution, and average pooling) with discrete wavelet transform (DWT). We firstly propose general DWT and inverse DWT (IDWT) layers applicable to various orthogonal and biorthogonal discrete wavelets like Haar, Daubechies, and Cohen, etc., and then design wavelet integrated CNNs (WaveCNets) by integrating DWT into the commonly used CNNs (VGG, ResNets, and DenseNet). During the down-sampling, WaveCNets apply DWT to decompose the feature maps into the low-frequency and high-frequency components. Containing the main information including the basic object structures, the low-frequency component is transmitted into the following layers to generate robust high-level features. The high-frequency components are dropped to remove most of the data noises. The experimental results show that %wavelet accelerates the CNN training, and WaveCNets achieve higher accuracy on ImageNet than various vanilla CNNs. We have also tested the performance of WaveCNets on the noisy version of ImageNet, ImageNet-C and six adversarial attacks, the results suggest that the proposed DWT/IDWT layers could provide better noise-robustness and adversarial robustness. When applying WaveCNets as backbones, the performance of object detectors (i.e., faster R-CNN and RetinaNet) on COCO detection dataset are consistently improved. We believe that suppression of aliasing effect, i.e. separation of low frequency and high frequency information, is the main advantages of our approach. The code of our DWT/IDWT layer and different WaveCNets are available at https://github.com/CVI-SZU/WaveCNet.
Abstract:Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there still lacks of control over the generation process in order to achieve semantic face editing. In addition, it remains very challenging to maintain other face information untouched while editing the target attributes. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache and hair color. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.