Abstract:The confluence of ultrafast computers with large memory, rapid progress in Machine Learning (ML) algorithms, and the availability of large datasets place multiple engineering fields at the threshold of dramatic progress. However, a unique challenge in nuclear engineering is data scarcity because experimentation on nuclear systems is usually more expensive and time-consuming than most other disciplines. One potential way to resolve the data scarcity issue is deep generative learning, which uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data. In this way, one can significantly expand the dataset to train more accurate predictive ML models. In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models. We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data. Additionally, the DNN prediction uncertainties are quantified using Bayesian Neural Networks (BNN) and conformal prediction (CP) to assess the impact on predictive uncertainty reduction. To test the proposed methodology, we used TRACE simulations of steady-state void fraction data based on the NUPEC Boiling Water Reactor Full-size Fine-mesh Bundle Test (BFBT) benchmark. We found that augmenting the training dataset using VAEs has improved the DNN model's predictive accuracy, improved the prediction confidence intervals, and reduced the prediction uncertainties.
Abstract:Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to generate clearer images that are more visually pleasing to humans. However, the impact of LLIE methods in high-level vision tasks, such as image classification and object detection, which rely on high-quality image datasets, is not well {explored}. To explore the impact, we comprehensively evaluate LLIE methods on these high-level vision tasks by utilizing an empirical investigation comprising image classification and object detection experiments. The evaluation reveals a dichotomy: {\textit{While Low-Light Image Enhancement (LLIE) methods enhance human visual interpretation, their effect on computer vision tasks is inconsistent and can sometimes be harmful. }} Our findings suggest a disconnect between image enhancement for human visual perception and for machine analysis, indicating a need for LLIE methods tailored to support high-level vision tasks effectively. This insight is crucial for the development of LLIE techniques that align with the needs of both human and machine vision.
Abstract:Deep generative models (DGMs) have proven to be powerful in generating realistic data samples. Their capability to learn the underlying distribution of a dataset enable them to generate synthetic data samples that closely resemble the original training dataset, thus addressing the challenge of data scarcity. In this work, we investigated the capabilities of DGMs by developing a conditional variational autoencoder (CVAE) model to augment the critical heat flux (CHF) measurement data that was used to generate the 2006 Groeneveld lookup table. To determine how this approach compared to traditional methods, a fine-tuned deep neural network (DNN) regression model was created and evaluated with the same dataset. Both the CVAE and DNN models achieved small mean absolute relative errors, with the CVAE model maintaining more favorable results. To quantify the uncertainty in the model's predictions, uncertainty quantification (UQ) was performed with repeated sampling of the CVAE model and ensembling of the DNN model. Following UQ, the DNN ensemble notably improved performance when compared to the baseline DNN model, while the CVAE model achieved similar results to its non-UQ results. The CVAE model was shown to have significantly less variability and a higher confidence after assessment of the prediction-wise relative standard deviations. Evaluating domain generalization, both models achieved small mean error values when predicting both inside and outside the training domain, with predictions outside the training domain showing slightly larger errors. Overall, the CVAE model was comparable to the DNN regression model in predicting CHF values but with better uncertainty behavior.
Abstract:The development of Crud-Induced Power Shift (CIPS) is an operational challenge in Pressurized Water Reactors that is due to the development of crud on the fuel rod cladding. The available predictive tools developed previously, usually based on fundamental physics, are computationally expensive and have shown differing degrees of accuracy. This work proposes a completely top-down approach to predict CIPS instances on an assembly level with reactor-specific calibration built-in. Built using artificial neural networks, this work uses a three-dimensional convolutional approach to leverage the image-like layout of the input data. As a classifier, the convolutional neural network model predicts whether a given assembly will experience CIPS as well as the time of occurrence during a given cycle. This surrogate model is both trained and tested using a combination of calculated core model parameters and measured plant data from Unit 1 of the Catawba Nuclear Station. After the evaluation of its performance using various metrics, Monte Carlo dropout is employed for extensive uncertainty quantification of the model predictions. The results indicate that this methodology could be a viable approach in predicting CIPS with an assembly-level resolution across both clean and afflicted cycles, while using limited computational resources.
Abstract:Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.
Abstract:The goal of this work is to develop accurate Machine Learning (ML) models for predicting the assembly axial neutron flux profiles in the SAFARI-1 research reactor, trained by measurement data from historical cycles. The data-driven nature of ML models makes them susceptible to uncertainties which are introduced by sources such as noise in training data, incomplete coverage of the domain, extrapolation and imperfect model architectures. To this end, we also aim at quantifying the approximation uncertainties of the ML model predictions. Previous work using Deep Neural Networks (DNNs) has been successful for fuel assemblies in SAFARI-1, however, not as accurate for control follower assemblies. The aim of this work is to improve the ML models for the control assemblies by a combination of supervised and unsupervised ML algorithms. The $k$-means and Affinity Propagation unsupervised ML algorithms are employed to identify clusters in the set of the measured axial neutron flux profiles. Then, regression-based supervised ML models using DNN (with prediction uncertainties quantified with Monte Carlo dropout) and Gaussian Process (GP) are trained for different clusters and the prediction uncertainty is estimated. It was found that applying the proposed procedure improves the prediction accuracy for the control assemblies and reduces the prediction uncertainty. Flux shapes predicted by DNN and GP are very close, and the overall accuracy became comparable to the fuel assemblies. The prediction uncertainty is however smaller for GP models.
Abstract:Deep learning (DL) has achieved remarkable successes in many disciplines such as computer vision and natural language processing due to the availability of ``big data''. However, such success cannot be easily replicated in many nuclear engineering problems because of the limited amount of training data, especially when the data comes from high-cost experiments. To overcome such a data scarcity issue, this paper explores the applications of deep generative models (DGMs) that have been widely used for image data generation to scientific data augmentation. DGMs, such as generative adversarial networks (GANs), normalizing flows (NFs), variational autoencoders (VAEs), and conditional VAEs (CVAEs), can be trained to learn the underlying probabilistic distribution of the training dataset. Once trained, they can be used to generate synthetic data that are similar to the training data and significantly expand the dataset size. By employing DGMs to augment TRACE simulated data of the steady-state void fractions based on the NUPEC Boiling Water Reactor Full-size Fine-mesh Bundle Test (BFBT) benchmark, this study demonstrates that VAEs, CVAEs, and GANs have comparable generative performance with similar errors in the synthetic data, with CVAEs achieving the smallest errors. The findings shows that DGMs have a great potential to augment scientific data in nuclear engineering, which proves effective for expanding the training dataset and enabling other DL models to be trained more accurately.
Abstract:Advanced Manufacturing (AM) has gained significant interest in the nuclear community for its potential application on nuclear materials. One challenge is to obtain desired material properties via controlling the manufacturing process during runtime. Intelligent AM based on deep reinforcement learning (DRL) relies on an automated process-level control mechanism to generate optimal design variables and adaptive system settings for improved end-product properties. A high-fidelity thermo-mechanical model for direct energy deposition has recently been developed within the MOOSE framework at the Idaho National Laboratory (INL). The goal of this work is to develop an accurate and fast-running reduced order model (ROM) for this MOOSE-based AM model that can be used in a DRL-based process control and optimization method. Operator learning (OL)-based methods will be employed due to their capability to learn a family of differential equations, in this work, produced by changing process variables in the Gaussian point heat source for the laser. We will develop OL-based ROM using Fourier neural operator, and perform a benchmark comparison of its performance with a conventional deep neural network-based ROM.
Abstract:One predominant challenge in additive manufacturing (AM) is to achieve specific material properties by manipulating manufacturing process parameters during the runtime. Such manipulation tends to increase the computational load imposed on existing simulation tools employed in AM. The goal of the present work is to construct a fast and accurate reduced-order model (ROM) for an AM model developed within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, ultimately reducing the time/cost of AM control and optimization processes. Our adoption of the operator learning (OL) approach enabled us to learn a family of differential equations produced by altering process variables in the laser's Gaussian point heat source. More specifically, we used the Fourier neural operator (FNO) and deep operator network (DeepONet) to develop ROMs for time-dependent responses. Furthermore, we benchmarked the performance of these OL methods against a conventional deep neural network (DNN)-based ROM. Ultimately, we found that OL methods offer comparable performance and, in terms of accuracy and generalizability, even outperform DNN at predicting scalar model responses. The DNN-based ROM afforded the fastest training time. Furthermore, all the ROMs were faster than the original MOOSE model yet still provided accurate predictions. FNO had a smaller mean prediction error than DeepONet, with a larger variance for time-dependent responses. Unlike DNN, both FNO and DeepONet were able to simulate time series data without the need for dimensionality reduction techniques. The present work can help facilitate the AM optimization process by enabling faster execution of simulation tools while still preserving evaluation accuracy.
Abstract:Inverse UQ is the process to inversely quantify the model input uncertainties based on experimental data. This work focuses on developing an inverse UQ process for time-dependent responses, using dimensionality reduction by functional principal component analysis (PCA) and deep neural network (DNN)-based surrogate models. The demonstration is based on the inverse UQ of TRACE physical model parameters using the FEBA transient experimental data. The measurement data is time-dependent peak cladding temperature (PCT). Since the quantity-of-interest (QoI) is time-dependent that corresponds to infinite-dimensional responses, PCA is used to reduce the QoI dimension while preserving the transient profile of the PCT, in order to make the inverse UQ process more efficient. However, conventional PCA applied directly to the PCT time series profiles can hardly represent the data precisely due to the sudden temperature drop at the time of quenching. As a result, a functional alignment method is used to separate the phase and amplitude information of the transient PCT profiles before dimensionality reduction. DNNs are then trained using PC scores from functional PCA to build surrogate models of TRACE in order to reduce the computational cost in Markov Chain Monte Carlo sampling. Bayesian neural networks are used to estimate the uncertainties of DNN surrogate model predictions. In this study, we compared four different inverse UQ processes with different dimensionality reduction methods and surrogate models. The proposed approach shows an improvement in reducing the dimension of the TRACE transient simulations, and the forward propagation of inverse UQ results has a better agreement with the experimental data.