Abstract:Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to generate clearer images that are more visually pleasing to humans. However, the impact of LLIE methods in high-level vision tasks, such as image classification and object detection, which rely on high-quality image datasets, is not well {explored}. To explore the impact, we comprehensively evaluate LLIE methods on these high-level vision tasks by utilizing an empirical investigation comprising image classification and object detection experiments. The evaluation reveals a dichotomy: {\textit{While Low-Light Image Enhancement (LLIE) methods enhance human visual interpretation, their effect on computer vision tasks is inconsistent and can sometimes be harmful. }} Our findings suggest a disconnect between image enhancement for human visual perception and for machine analysis, indicating a need for LLIE methods tailored to support high-level vision tasks effectively. This insight is crucial for the development of LLIE techniques that align with the needs of both human and machine vision.
Abstract:Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.