Abstract:Learning to move is a primary goal for animals and robots, where ensuring safety is often important when optimizing control policies on the embodied systems. For complex tasks such as the control of human or humanoid control, the high-dimensional parameter space adds complexity to the safe optimization effort. Current safe exploration algorithms exhibit inefficiency and may even become infeasible with large high-dimensional input spaces. Furthermore, existing high-dimensional constrained optimization methods neglect safety in the search process. In this paper, we propose High-dimensional Safe Bayesian Optimization with local optimistic exploration (HdSafeBO), a novel approach designed to handle high-dimensional sampling problems under probabilistic safety constraints. We introduce a local optimistic strategy to efficiently and safely optimize the objective function, providing a probabilistic safety guarantee and a cumulative safety violation bound. Through the use of isometric embedding, HdSafeBO addresses problems ranging from a few hundred to several thousand dimensions while maintaining safety guarantees. To our knowledge, HdSafeBO is the first algorithm capable of optimizing the control of high-dimensional musculoskeletal systems with high safety probability. We also demonstrate the real-world applicability of HdSafeBO through its use in the safe online optimization of neural stimulation induced human motion control.
Abstract:Sampling-based Model Predictive Control (MPC) has been a practical and effective approach in many domains, notably model-based reinforcement learning, thanks to its flexibility and parallelizability. Despite its appealing empirical performance, the theoretical understanding, particularly in terms of convergence analysis and hyperparameter tuning, remains absent. In this paper, we characterize the convergence property of a widely used sampling-based MPC method, Model Predictive Path Integral Control (MPPI). We show that MPPI enjoys at least linear convergence rates when the optimization is quadratic, which covers time-varying LQR systems. We then extend to more general nonlinear systems. Our theoretical analysis directly leads to a novel sampling-based MPC algorithm, CoVariance-Optimal MPC (CoVo-MPC) that optimally schedules the sampling covariance to optimize the convergence rate. Empirically, CoVo-MPC significantly outperforms standard MPPI by 43-54% in both simulations and real-world quadrotor agile control tasks. Videos and Appendices are available at \url{https://lecar-lab.github.io/CoVO-MPC/}.
Abstract:Sequential optimization methods are often confronted with the curse of dimensionality in high-dimensional spaces. Current approaches under the Gaussian process framework are still burdened by the computational complexity of tracking Gaussian process posteriors and need to partition the optimization problem into small regions to ensure exploration or assume an underlying low-dimensional structure. With the idea of transiting the candidate points towards more promising positions, we propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior. We provide theoretical guarantees of its convergence in the Gaussian process Thompson sampling setting. We also show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.