Stanford University
Abstract:Learning an effective policy to control high-dimensional, overactuated systems is a significant challenge for deep reinforcement learning algorithms. Such control scenarios are often observed in the neural control of vertebrate musculoskeletal systems. The study of these control mechanisms will provide insights into the control of high-dimensional, overactuated systems. The coordination of actuators, known as muscle synergies in neuromechanics, is considered a presumptive mechanism that simplifies the generation of motor commands. The dynamical structure of a system is the basis of its function, allowing us to derive a synergistic representation of actuators. Motivated by this theory, we propose the Dynamical Synergistic Representation (DynSyn) algorithm. DynSyn aims to generate synergistic representations from dynamical structures and perform task-specific, state-dependent adaptation to the representations to improve motor control. We demonstrate DynSyn's efficiency across various tasks involving different musculoskeletal models, achieving state-of-the-art sample efficiency and robustness compared to baseline algorithms. DynSyn generates interpretable synergistic representations that capture the essential features of dynamical structures and demonstrates generalizability across diverse motor tasks.
Abstract:We study the problem of Distributionally Robust Constrained RL (DRC-RL), where the goal is to maximize the expected reward subject to environmental distribution shifts and constraints. This setting captures situations where training and testing environments differ, and policies must satisfy constraints motivated by safety or limited budgets. Despite significant progress toward algorithm design for the separate problems of distributionally robust RL and constrained RL, there do not yet exist algorithms with end-to-end convergence guarantees for DRC-RL. We develop an algorithmic framework based on strong duality that enables the first efficient and provable solution in a class of environmental uncertainties. Further, our framework exposes an inherent structure of DRC-RL that arises from the combination of distributional robustness and constraints, which prevents a popular class of iterative methods from tractably solving DRC-RL, despite such frameworks being applicable for each of distributionally robust RL and constrained RL individually. Finally, we conduct experiments on a car racing benchmark to evaluate the effectiveness of the proposed algorithm.
Abstract:Ensuring safety is critical when applying reinforcement learning (RL) to real-world problems. Consequently, safe RL emerges as a fundamental and powerful paradigm for safely optimizing an agent's policy from experimental data. A popular safe RL approach is based on a constrained criterion, which solves the problem of maximizing expected cumulative reward under safety constraints. Though there has been recently a surge of such attempts to achieve safety in RL, a systematic understanding of the field is difficult due to 1) the diversity of constraint representations and 2) little discussion of their interrelations. To address this knowledge gap, we provide a comprehensive review of representative constraint formulations, along with a curated selection of algorithms specifically designed for each formulation. Furthermore, we elucidate the theoretical underpinnings that reveal the mathematical mutual relations among common problem formulations. We conclude with a discussion of the current state and future directions of safe reinforcement learning research.
Abstract:Sequential optimization methods are often confronted with the curse of dimensionality in high-dimensional spaces. Current approaches under the Gaussian process framework are still burdened by the computational complexity of tracking Gaussian process posteriors and need to partition the optimization problem into small regions to ensure exploration or assume an underlying low-dimensional structure. With the idea of transiting the candidate points towards more promising positions, we propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior. We provide theoretical guarantees of its convergence in the Gaussian process Thompson sampling setting. We also show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.
Abstract:Sample efficiency is crucial in optimization, particularly in black-box scenarios characterized by expensive evaluations and zeroth-order feedback. When computing resources are plentiful, Bayesian optimization is often favored over evolution strategies. In this paper, we introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework, that effectively rivals the leading Bayesian optimization method in tasks with dimensions at the upper limit of Bayesian capability. Specifically, we first build the framework InvIGO that fully incorporates historical information while retaining the full invariant and computational complexity. We then exemplify InvIGO on multi-dimensional Gaussian, which gives an invariant and scalable optimizer SynCMA . The theoretical behavior and advantages of our algorithm over other Gaussian-based evolution strategies are further analyzed. Finally, We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies on various high dimension tasks, in cluding Mujoco locomotion tasks, rover planning task and synthetic functions. In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency, showing the underdeveloped potential of property oriented evolution strategies.
Abstract:Modeling and control of the human musculoskeletal system is important for understanding human motion, developing embodied intelligence, and optimizing human-robot interaction systems. However, current open-source models are restricted to a limited range of body parts and often with a reduced number of muscles. There is also a lack of algorithms capable of controlling over 600 muscles to generate reasonable human movements. To fill this gap, we build a comprehensive musculoskeletal model with 90 body segments, 206 joints, and 700 muscle-tendon units, allowing simulation of full-body dynamics and interaction with various devices. We develop a new algorithm using low-dimensional representation and hierarchical deep reinforcement learning to achieve state-of-the-art full-body control. We validate the effectiveness of our model and algorithm in simulations and on real human locomotion data. The musculoskeletal model, along with its control algorithm, will be made available to the research community to promote a deeper understanding of human motion control and better design of interactive robots.
Abstract:The detection of human sleep stages is widely used in the diagnosis and intervention of neurological and psychiatric diseases. Some patients with deep brain stimulator implanted could have their neural activities recorded from the deep brain. Sleep stage classification based on deep brain recording has great potential to provide more precise treatment for patients. The accuracy and generalizability of existing sleep stage classifiers based on local field potentials are still limited. We proposed an applicable cross-modal transfer learning method for sleep stage classification with implanted devices. This end-to-end deep learning model contained cross-modal self-supervised feature representation, self-attention, and classification framework. We tested the model with deep brain recording data from 12 patients with Parkinson's disease. The best total accuracy reached 83.2% for sleep stage classification. Results showed speech self-supervised features catch the conversion pattern of sleep stages effectively. We provide a new method on transfer learning from acoustic signals to local field potentials. This method supports an effective solution for the insufficient scale of clinical data. This sleep stage classification model could be adapted to chronic and continuous monitor sleep for Parkinson's patients in daily life, and potentially utilized for more precise treatment in deep brain-machine interfaces, such as closed-loop deep brain stimulation.
Abstract:Safe exploration is a key to applying reinforcement learning (RL) in safety-critical systems. Existing safe exploration methods guaranteed safety under the assumption of regularity, and it has been difficult to apply them to large-scale real problems. We propose a novel algorithm, SPO-LF, that optimizes an agent's policy while learning the relation between a locally available feature obtained by sensors and environmental reward/safety using generalized linear function approximations. We provide theoretical guarantees on its safety and optimality. We experimentally show that our algorithm is 1) more efficient in terms of sample complexity and computational cost and 2) more applicable to large-scale problems than previous safe RL methods with theoretical guarantees, and 3) comparably sample-efficient and safer compared with existing advanced deep RL methods with safety constraints.
Abstract:Most existing imitation learning approaches assume the demonstrations are drawn from experts who are optimal, but relaxing this assumption enables us to use a wider range of data. Standard imitation learning may learn a suboptimal policy from demonstrations with varying optimality. Prior works use confidence scores or rankings to capture beneficial information from demonstrations with varying optimality, but they suffer from many limitations, e.g., manually annotated confidence scores or high average optimality of demonstrations. In this paper, we propose a general framework to learn from demonstrations with varying optimality that jointly learns the confidence score and a well-performing policy. Our approach, Confidence-Aware Imitation Learning (CAIL) learns a well-performing policy from confidence-reweighted demonstrations, while using an outer loss to track the performance of our model and to learn the confidence. We provide theoretical guarantees on the convergence of CAIL and evaluate its performance in both simulated and real robot experiments. Our results show that CAIL significantly outperforms other imitation learning methods from demonstrations with varying optimality. We further show that even without access to any optimal demonstrations, CAIL can still learn a successful policy, and outperforms prior work.
Abstract:Speech disorders often occur at the early stage of Parkinson's disease (PD). The speech impairments could be indicators of the disorder for early diagnosis, while motor symptoms are not obvious. In this study, we constructed a new speech corpus of Mandarin Chinese and addressed classification of patients with PD. We implemented classical machine learning methods with ranking algorithms for feature selection, convolutional and recurrent deep networks, and an end to end system. Our classification accuracy significantly surpassed state-of-the-art studies. The result suggests that free talk has stronger classification power than standard speech tasks, which could help the design of future speech tasks for efficient early diagnosis of the disease. Based on existing classification methods and our natural speech study, the automatic detection of PD from daily conversation could be accessible to the majority of the clinical population.