Abstract:Controlling high-dimensional systems in biological and robotic applications is challenging due to expansive state-action spaces, where effective exploration is critical. Commonly used exploration strategies in reinforcement learning are largely undirected with sharp degradation as action dimensionality grows. Many existing methods resort to dimensionality reduction, which constrains policy expressiveness and forfeits system flexibility. We introduce Q-guided Flow Exploration (Qflex), a scalable reinforcement learning method that conducts exploration directly in the native high-dimensional action space. During training, Qflex traverses actions from a learnable source distribution along a probability flow induced by the learned value function, aligning exploration with task-relevant gradients rather than isotropic noise. Our proposed method substantially outperforms representative online reinforcement learning baselines across diverse high-dimensional continuous-control benchmarks. Qflex also successfully controls a full-body human musculoskeletal model to perform agile, complex movements, demonstrating superior scalability and sample efficiency in very high-dimensional settings. Our results indicate that value-guided flows offer a principled and practical route to exploration at scale.
Abstract:Balance control is important for human and bipedal robotic systems. While dynamic balance during locomotion has received considerable attention, quantitative understanding of static balance and falling remains limited. This work presents a hierarchical control pipeline for simulating human balance via a comprehensive whole-body musculoskeletal system. We identified spatiotemporal dynamics of balancing during stable standing, revealed the impact of muscle injury on balancing behavior, and generated fall contact patterns that aligned with clinical data. Furthermore, our simulated hip exoskeleton assistance demonstrated improvement in balance maintenance and reduced muscle effort under perturbation. This work offers unique muscle-level insights into human balance dynamics that are challenging to capture experimentally. It could provide a foundation for developing targeted interventions for individuals with balance impairments and support the advancement of humanoid robotic systems.
Abstract:Learning an effective policy to control high-dimensional, overactuated systems is a significant challenge for deep reinforcement learning algorithms. Such control scenarios are often observed in the neural control of vertebrate musculoskeletal systems. The study of these control mechanisms will provide insights into the control of high-dimensional, overactuated systems. The coordination of actuators, known as muscle synergies in neuromechanics, is considered a presumptive mechanism that simplifies the generation of motor commands. The dynamical structure of a system is the basis of its function, allowing us to derive a synergistic representation of actuators. Motivated by this theory, we propose the Dynamical Synergistic Representation (DynSyn) algorithm. DynSyn aims to generate synergistic representations from dynamical structures and perform task-specific, state-dependent adaptation to the representations to improve motor control. We demonstrate DynSyn's efficiency across various tasks involving different musculoskeletal models, achieving state-of-the-art sample efficiency and robustness compared to baseline algorithms. DynSyn generates interpretable synergistic representations that capture the essential features of dynamical structures and demonstrates generalizability across diverse motor tasks.
Abstract:Modeling and control of the human musculoskeletal system is important for understanding human motion, developing embodied intelligence, and optimizing human-robot interaction systems. However, current open-source models are restricted to a limited range of body parts and often with a reduced number of muscles. There is also a lack of algorithms capable of controlling over 600 muscles to generate reasonable human movements. To fill this gap, we build a comprehensive musculoskeletal model with 90 body segments, 206 joints, and 700 muscle-tendon units, allowing simulation of full-body dynamics and interaction with various devices. We develop a new algorithm using low-dimensional representation and hierarchical deep reinforcement learning to achieve state-of-the-art full-body control. We validate the effectiveness of our model and algorithm in simulations and on real human locomotion data. The musculoskeletal model, along with its control algorithm, will be made available to the research community to promote a deeper understanding of human motion control and better design of interactive robots.