Abstract:Sequential optimization methods are often confronted with the curse of dimensionality in high-dimensional spaces. Current approaches under the Gaussian process framework are still burdened by the computational complexity of tracking Gaussian process posteriors and need to partition the optimization problem into small regions to ensure exploration or assume an underlying low-dimensional structure. With the idea of transiting the candidate points towards more promising positions, we propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior. We provide theoretical guarantees of its convergence in the Gaussian process Thompson sampling setting. We also show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.
Abstract:Sample efficiency is crucial in optimization, particularly in black-box scenarios characterized by expensive evaluations and zeroth-order feedback. When computing resources are plentiful, Bayesian optimization is often favored over evolution strategies. In this paper, we introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework, that effectively rivals the leading Bayesian optimization method in tasks with dimensions at the upper limit of Bayesian capability. Specifically, we first build the framework InvIGO that fully incorporates historical information while retaining the full invariant and computational complexity. We then exemplify InvIGO on multi-dimensional Gaussian, which gives an invariant and scalable optimizer SynCMA . The theoretical behavior and advantages of our algorithm over other Gaussian-based evolution strategies are further analyzed. Finally, We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies on various high dimension tasks, in cluding Mujoco locomotion tasks, rover planning task and synthetic functions. In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency, showing the underdeveloped potential of property oriented evolution strategies.
Abstract:Safe exploration is a key to applying reinforcement learning (RL) in safety-critical systems. Existing safe exploration methods guaranteed safety under the assumption of regularity, and it has been difficult to apply them to large-scale real problems. We propose a novel algorithm, SPO-LF, that optimizes an agent's policy while learning the relation between a locally available feature obtained by sensors and environmental reward/safety using generalized linear function approximations. We provide theoretical guarantees on its safety and optimality. We experimentally show that our algorithm is 1) more efficient in terms of sample complexity and computational cost and 2) more applicable to large-scale problems than previous safe RL methods with theoretical guarantees, and 3) comparably sample-efficient and safer compared with existing advanced deep RL methods with safety constraints.