Abstract:Dressed people reconstruction from images is a popular task with promising applications in the creative media and game industry. However, most existing methods reconstruct the human body and garments as a whole with the supervision of 3D models, which hinders the downstream interaction tasks and requires hard-to-obtain data. To address these issues, we propose an unsupervised separated 3D garments and human reconstruction model (USR), which reconstructs the human body and authentic textured clothes in layers without 3D models. More specifically, our method proposes a generalized surface-aware neural radiance field to learn the mapping between sparse multi-view images and geometries of the dressed people. Based on the full geometry, we introduce a Semantic and Confidence Guided Separation strategy (SCGS) to detect, segment, and reconstruct the clothes layer, leveraging the consistency between 2D semantic and 3D geometry. Moreover, we propose a Geometry Fine-tune Module to smooth edges. Extensive experiments on our dataset show that comparing with state-of-the-art methods, USR achieves improvements on both geometry and appearance reconstruction while supporting generalizing to unseen people in real time. Besides, we also introduce SMPL-D model to show the benefit of the separated modeling of clothes and the human body that allows swapping clothes and virtual try-on.
Abstract:Neural topic models have triggered a surge of interest in extracting topics from text automatically since they avoid the sophisticated derivations in conventional topic models. However, scarce neural topic models incorporate the word relatedness information captured in word embedding into the modeling process. To address this issue, we propose a novel topic modeling approach, called Variational Gaussian Topic Model (VaGTM). Based on the variational auto-encoder, the proposed VaGTM models each topic with a multivariate Gaussian in decoder to incorporate word relatedness. Furthermore, to address the limitation that pre-trained word embeddings of topic-associated words do not follow a multivariate Gaussian, Variational Gaussian Topic Model with Invertible neural Projections (VaGTM-IP) is extended from VaGTM. Three benchmark text corpora are used in experiments to verify the effectiveness of VaGTM and VaGTM-IP. The experimental results show that VaGTM and VaGTM-IP outperform several competitive baselines and obtain more coherent topics.
Abstract:Web search is an essential way for human to obtain information, but it's still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of web-based structural reading comprehension. Given a web page and a question about it, the task is to find an answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 0.44M question-answer pairs, which are collected from 6.5K web pages with corresponding HTML source code, screenshots, and metadata. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various strong baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and task are publicly available at https://speechlab-sjtu.github.io/WebSRC/.
Abstract:Advances on deep generative models have attracted significant research interest in neural topic modeling. The recently proposed Adversarial-neural Topic Model models topics with an adversarially trained generator network and employs Dirichlet prior to capture the semantic patterns in latent topics. It is effective in discovering coherent topics but unable to infer topic distributions for given documents or utilize available document labels. To overcome such limitations, we propose Topic Modeling with Cycle-consistent Adversarial Training (ToMCAT) and its supervised version sToMCAT. ToMCAT employs a generator network to interpret topics and an encoder network to infer document topics. Adversarial training and cycle-consistent constraints are used to encourage the generator and the encoder to produce realistic samples that coordinate with each other. sToMCAT extends ToMCAT by incorporating document labels into the topic modeling process to help discover more coherent topics. The effectiveness of the proposed models is evaluated on unsupervised/supervised topic modeling and text classification. The experimental results show that our models can produce both coherent and informative topics, outperforming a number of competitive baselines.
Abstract:Recent years have witnessed a surge of interests of using neural topic models for automatic topic extraction from text, since they avoid the complicated mathematical derivations for model inference as in traditional topic models such as Latent Dirichlet Allocation (LDA). However, these models either typically assume improper prior (e.g. Gaussian or Logistic Normal) over latent topic space or could not infer topic distribution for a given document. To address these limitations, we propose a neural topic modeling approach, called Bidirectional Adversarial Topic (BAT) model, which represents the first attempt of applying bidirectional adversarial training for neural topic modeling. The proposed BAT builds a two-way projection between the document-topic distribution and the document-word distribution. It uses a generator to capture the semantic patterns from texts and an encoder for topic inference. Furthermore, to incorporate word relatedness information, the Bidirectional Adversarial Topic model with Gaussian (Gaussian-BAT) is extended from BAT. To verify the effectiveness of BAT and Gaussian-BAT, three benchmark corpora are used in our experiments. The experimental results show that BAT and Gaussian-BAT obtain more coherent topics, outperforming several competitive baselines. Moreover, when performing text clustering based on the extracted topics, our models outperform all the baselines, with more significant improvements achieved by Gaussian-BAT where an increase of near 6\% is observed in accuracy.