Abstract:We have built a custom mobile multi-camera large-space dense light field capture system, which provides a series of high-quality and sufficiently dense light field images for various scenarios. Our aim is to contribute to the development of popular 3D scene reconstruction algorithms such as IBRnet, NeRF, and 3D Gaussian splitting. More importantly, the collected dataset, which is much denser than existing datasets, may also inspire space-oriented light field reconstruction, which is potentially different from object-centric 3D reconstruction, for immersive VR/AR experiences. We utilized a total of 40 GoPro 10 cameras, capturing images of 5k resolution. The number of photos captured for each scene is no less than 1000, and the average density (view number within a unit sphere) is 134.68. It is also worth noting that our system is capable of efficiently capturing large outdoor scenes. Addressing the current lack of large-space and dense light field datasets, we made efforts to include elements such as sky, reflections, lights and shadows that are of interest to researchers in the field of 3D reconstruction during the data capture process. Finally, we validated the effectiveness of our provided dataset on three popular algorithms and also integrated the reconstructed 3DGS results into the Unity engine, demonstrating the potential of utilizing our datasets to enhance the realism of virtual reality (VR) and create feasible interactive spaces. The dataset is available at our project website.
Abstract:Event cameras or dynamic vision sensors (DVS) record asynchronous response to brightness changes instead of conventional intensity frames, and feature ultra-high sensitivity at low bandwidth. The new mechanism demonstrates great advantages in challenging scenarios with fast motion and large dynamic range. However, the recorded events might be highly sparse due to either limited hardware bandwidth or extreme photon starvation in harsh environments. To unlock the full potential of event cameras, we propose an inventive event sequence completion approach conforming to the unique characteristics of event data in both the processing stage and the output form. Specifically, we treat event streams as 3D event clouds in the spatiotemporal domain, develop a diffusion-based generative model to generate dense clouds in a coarse-to-fine manner, and recover exact timestamps to maintain the temporal resolution of raw data successfully. To validate the effectiveness of our method comprehensively, we perform extensive experiments on three widely used public datasets with different spatial resolutions, and additionally collect a novel event dataset covering diverse scenarios with highly dynamic motions and under harsh illumination. Besides generating high-quality dense events, our method can benefit downstream applications such as object classification and intensity frame reconstruction.
Abstract:This paper proposes a hybrid radiance field representation for unbounded immersive light field reconstruction which supports high-quality rendering and aggressive view extrapolation. The key idea is to first formally separate the foreground and the background and then adaptively balance learning of them during the training process. To fulfill this goal, we represent the foreground and background as two separate radiance fields with two different spatial mapping strategies. We further propose an adaptive sampling strategy and a segmentation regularizer for more clear segmentation and robust convergence. Finally, we contribute a novel immersive light field dataset, named THUImmersive, with the potential to achieve much larger space 6DoF immersive rendering effects compared with existing datasets, by capturing multiple neighboring viewpoints for the same scene, to stimulate the research and AR/VR applications in the immersive light field domain. Extensive experiments demonstrate the strong performance of our method for unbounded immersive light field reconstruction.
Abstract:The neural radiance field (NeRF) achieved remarkable success in modeling 3D scenes and synthesizing high-fidelity novel views. However, existing NeRF-based methods focus more on the make full use of the image resolution to generate novel views, but less considering the generation of details under the limited input resolution. In analogy to the extensive usage of image super-resolution, NeRF super-resolution is an effective way to generate the high-resolution implicit representation of 3D scenes and holds great potential applications. Up to now, such an important topic is still under-explored. In this paper, we propose a NeRF super-resolution method, named Super-NeRF, to generate high-resolution NeRF from only low-resolution inputs. Given multi-view low-resolution images, Super-NeRF constructs a consistency-controlling super-resolution module to generate view-consistent high-resolution details for NeRF. Specifically, an optimizable latent code is introduced for each low-resolution input image to control the 2D super-resolution images to converge to the view-consistent output. The latent codes of each low-resolution image are optimized synergistically with the target Super-NeRF representation to fully utilize the view consistency constraint inherent in NeRF construction. We verify the effectiveness of Super-NeRF on synthetic, real-world, and AI-generated NeRF datasets. Super-NeRF achieves state-of-the-art NeRF super-resolution performance on high-resolution detail generation and cross-view consistency.
Abstract:Correlation filter (CF) based trackers have aroused increasing attentions in visual tracking field due to the superior performance on several datasets while maintaining high running speed. For each frame, an ideal filter is trained in order to discriminate the target from its surrounding background. Considering that the target always undergoes external and internal interference during tracking procedure, the trained filter should take consideration of not only the external distractions but also the target appearance variation synchronously. To this end, we present a State-aware Anti-drift Tracker (SAT) in this paper, which jointly model the discrimination and reliability information in filter learning. Specifically, global context patches are incorporated into filter training stage to better distinguish the target from backgrounds. Meanwhile, a color-based reliable mask is learned to encourage the filter to focus on more reliable regions suitable for tracking. We show that the proposed optimization problem could be efficiently solved using Alternative Direction Method of Multipliers and fully carried out in Fourier domain. Extensive experiments are conducted on OTB-100 datasets to compare the SAT tracker (both hand-crafted feature and CNN feature) with other relevant state-of-the-art methods. Both quantitative and qualitative evaluations further demonstrate the effectiveness and robustness of the proposed work.
Abstract:Recently, correlation filter-based trackers have received extensive attention due to their simplicity and superior speed. However, such trackers perform poorly when the target undergoes occlusion, viewpoint change or other challenging attributes due to pre-defined sampling strategy. To tackle these issues, in this paper, we propose an adaptive region proposal scheme to facilitate visual tracking. To be more specific, a novel tracking monitoring indicator is advocated to forecast tracking failure. Afterwards, we incorporate detection and scale proposals respectively, to recover from model drift as well as handle aspect ratio variation. We test the proposed algorithm on several challenging sequences, which have demonstrated that the proposed tracker performs favourably against state-of-the-art trackers.
Abstract:Robust feature representation plays significant role in visual tracking. However, it remains a challenging issue, since many factors may affect the experimental performance. The existing method which combine different features by setting them equally with the fixed weight could hardly solve the issues, due to the different statistical properties of different features across various of scenarios and attributes. In this paper, by exploiting the internal relationship among these features, we develop a robust method to construct a more stable feature representation. More specifically, we utilize a co-training paradigm to formulate the intrinsic complementary information of multi-feature template into the efficient correlation filter framework. We test our approach on challenging se- quences with illumination variation, scale variation, deformation etc. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods favorably.