Abstract:We have built a custom mobile multi-camera large-space dense light field capture system, which provides a series of high-quality and sufficiently dense light field images for various scenarios. Our aim is to contribute to the development of popular 3D scene reconstruction algorithms such as IBRnet, NeRF, and 3D Gaussian splitting. More importantly, the collected dataset, which is much denser than existing datasets, may also inspire space-oriented light field reconstruction, which is potentially different from object-centric 3D reconstruction, for immersive VR/AR experiences. We utilized a total of 40 GoPro 10 cameras, capturing images of 5k resolution. The number of photos captured for each scene is no less than 1000, and the average density (view number within a unit sphere) is 134.68. It is also worth noting that our system is capable of efficiently capturing large outdoor scenes. Addressing the current lack of large-space and dense light field datasets, we made efforts to include elements such as sky, reflections, lights and shadows that are of interest to researchers in the field of 3D reconstruction during the data capture process. Finally, we validated the effectiveness of our provided dataset on three popular algorithms and also integrated the reconstructed 3DGS results into the Unity engine, demonstrating the potential of utilizing our datasets to enhance the realism of virtual reality (VR) and create feasible interactive spaces. The dataset is available at our project website.
Abstract:The convergence of Artificial Intelligence (AI) and blockchain technology is reshaping the digital world, offering decentralized, secure, and efficient AI services on blockchain platforms. Despite the promise, the high computational demands of AI on blockchain raise significant privacy and efficiency concerns. The Optimistic Privacy-Preserving AI (opp/ai) framework is introduced as a pioneering solution to these issues, striking a balance between privacy protection and computational efficiency. The framework integrates Zero-Knowledge Machine Learning (zkML) for privacy with Optimistic Machine Learning (opML) for efficiency, creating a hybrid model tailored for blockchain AI services. This study presents the opp/ai framework, delves into the privacy features of zkML, and assesses the framework's performance and adaptability across different scenarios.
Abstract:This paper proposes a hybrid radiance field representation for unbounded immersive light field reconstruction which supports high-quality rendering and aggressive view extrapolation. The key idea is to first formally separate the foreground and the background and then adaptively balance learning of them during the training process. To fulfill this goal, we represent the foreground and background as two separate radiance fields with two different spatial mapping strategies. We further propose an adaptive sampling strategy and a segmentation regularizer for more clear segmentation and robust convergence. Finally, we contribute a novel immersive light field dataset, named THUImmersive, with the potential to achieve much larger space 6DoF immersive rendering effects compared with existing datasets, by capturing multiple neighboring viewpoints for the same scene, to stimulate the research and AR/VR applications in the immersive light field domain. Extensive experiments demonstrate the strong performance of our method for unbounded immersive light field reconstruction.
Abstract:The neural radiance field (NeRF) achieved remarkable success in modeling 3D scenes and synthesizing high-fidelity novel views. However, existing NeRF-based methods focus more on the make full use of the image resolution to generate novel views, but less considering the generation of details under the limited input resolution. In analogy to the extensive usage of image super-resolution, NeRF super-resolution is an effective way to generate the high-resolution implicit representation of 3D scenes and holds great potential applications. Up to now, such an important topic is still under-explored. In this paper, we propose a NeRF super-resolution method, named Super-NeRF, to generate high-resolution NeRF from only low-resolution inputs. Given multi-view low-resolution images, Super-NeRF constructs a consistency-controlling super-resolution module to generate view-consistent high-resolution details for NeRF. Specifically, an optimizable latent code is introduced for each low-resolution input image to control the 2D super-resolution images to converge to the view-consistent output. The latent codes of each low-resolution image are optimized synergistically with the target Super-NeRF representation to fully utilize the view consistency constraint inherent in NeRF construction. We verify the effectiveness of Super-NeRF on synthetic, real-world, and AI-generated NeRF datasets. Super-NeRF achieves state-of-the-art NeRF super-resolution performance on high-resolution detail generation and cross-view consistency.