Key Laboratory of Computational Linguistics, Ministry of Education, China, School of Computer Science, Peking University, China
Abstract:As large language models (LLMs) continue to evolve, understanding and quantifying the uncertainty in their predictions is critical for enhancing application credibility. However, the existing literature relevant to LLM uncertainty estimation often relies on heuristic approaches, lacking systematic classification of the methods. In this survey, we clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions. On this basis, we integrate theoretical perspectives, including Bayesian inference, information theory, and ensemble strategies, to categorize various classes of uncertainty estimation methods derived from heuristic approaches. Additionally, we address challenges that arise when applying these methods to LLMs. We also explore techniques for incorporating uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification. Our review provides insights into uncertainty estimation from both definitional and theoretical angles, contributing to a comprehensive understanding of this critical aspect in LLMs. We aim to inspire the development of more reliable and effective uncertainty estimation approaches for LLMs in real-world scenarios.
Abstract:Metaphor and sarcasm are common figurative expressions in people's communication, especially on the Internet or the memes popular among teenagers. We create a new benchmark named NYK-MS (NewYorKer for Metaphor and Sarcasm), which contains 1,583 samples for metaphor understanding tasks and 1,578 samples for sarcasm understanding tasks. These tasks include whether it contains metaphor/sarcasm, which word or object contains metaphor/sarcasm, what does it satirize and why does it contains metaphor/sarcasm, all of the 7 tasks are well-annotated by at least 3 annotators. We annotate the dataset for several rounds to improve the consistency and quality, and use GUI and GPT-4V to raise our efficiency. Based on the benchmark, we conduct plenty of experiments. In the zero-shot experiments, we show that Large Language Models (LLM) and Large Multi-modal Models (LMM) can't do classification task well, and as the scale increases, the performance on other 5 tasks improves. In the experiments on traditional pre-train models, we show the enhancement with augment and alignment methods, which prove our benchmark is consistent with previous dataset and requires the model to understand both of the two modalities.
Abstract:Nowadays, Large Language Models (LLMs) have demonstrated exceptional performance across various downstream tasks. However, it is challenging for users to discern whether the responses are generated with certainty or are fabricated to meet user expectations. Estimating the uncertainty of LLMs is particularly challenging due to their vast scale and the lack of white-box access. In this work, we propose a novel Uncertainty Tripartite Testing Paradigm (Unc-TTP) to classify LLM uncertainty, via evaluating the consistency of LLM outputs when incorporating label interference into the sampling-based approach. Based on Unc-TTP outputs, we aggregate instances into certain and uncertain categories. Further, we conduct a detailed analysis of the uncertainty properties of LLMs and show Unc-TTP's superiority over the existing sampling-based methods. In addition, we leverage the obtained uncertainty information to guide in-context example selection, demonstrating that Unc-TTP obviously outperforms retrieval-based and sampling-based approaches in selecting more informative examples. Our work paves a new way to classify the uncertainty of both open- and closed-source LLMs, and introduces a practical approach to exploit this uncertainty to improve LLMs performance.
Abstract:With the help of in-context learning (ICL), large language models (LLMs) have achieved impressive performance across various tasks. However, the function of descriptive instructions during ICL remains under-explored. In this work, we propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples, and preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL perfromance. But to our surprise, LLMs might not necessarily care what the descriptions actually say, and the performance gain is primarily caused by the ensemble format, since the framework could lead to improvement even with random descriptive nouns. We further apply this new ensemble prompt on a range of commonsense, math, logical reasoning and hallucination tasks with three LLMs and achieve promising results, suggesting again that designing a proper prompt format would be much more effective and efficient than paying effort into specific descriptions. Our code will be publicly available once this paper is published.
Abstract:In-context learning (ICL) greatly improves the performance of large language models (LLMs) on various down-stream tasks, where the improvement highly depends on the quality of demonstrations. In this work, we introduce syntactic knowledge to select better in-context examples for machine translation (MT). We propose a new strategy, namely Syntax-augmented COverage-based In-context example selection (SCOI), leveraging the deep syntactic structure beyond conventional word matching. Specifically, we measure the set-level syntactic coverage by computing the coverage of polynomial terms with the help of a simplified tree-to-polynomial algorithm, and lexical coverage using word overlap. Furthermore, we devise an alternate selection approach to combine both coverage measures, taking advantage of syntactic and lexical information. We conduct experiments with two multi-lingual LLMs on six translation directions. Empirical results show that our proposed SCOI obtains the highest average COMET score among all learning-free methods, indicating that combining syntactic and lexical coverage successfully helps to select better in-context examples for MT.
Abstract:Information Extraction (IE) plays a crucial role in Natural Language Processing (NLP) by extracting structured information from unstructured text, thereby facilitating seamless integration with various real-world applications that rely on structured data. Despite its significance, recent experiments focusing on English IE tasks have shed light on the challenges faced by Large Language Models (LLMs) in achieving optimal performance, particularly in sub-tasks like Named Entity Recognition (NER). In this paper, we delve into a comprehensive investigation of the performance of mainstream Chinese open-source LLMs in tackling IE tasks, specifically under zero-shot conditions where the models are not fine-tuned for specific tasks. Additionally, we present the outcomes of several few-shot experiments to further gauge the capability of these models. Moreover, our study includes a comparative analysis between these open-source LLMs and ChatGPT, a widely recognized language model, on IE performance. Through meticulous experimentation and analysis, we aim to provide insights into the strengths, limitations, and potential enhancements of existing Chinese open-source LLMs in the domain of Information Extraction within the context of NLP.
Abstract:Within the context of reading comprehension, the task of Distractor Generation (DG) aims to generate several incorrect options to confuse readers. Traditional supervised methods for DG rely heavily on expensive human-annotated distractor labels. In this paper, we propose an unsupervised DG framework, leveraging Large Language Models (LLMs) as cost-effective annotators to enhance the DG capability of smaller student models. Specially, to perform knowledge distilling, we propose a dual task training strategy that integrates pseudo distractors from LLMs and the original answer in-formation as the objective targets with a two-stage training process. Moreover, we devise a counterfactual contrastive decoding mechanism for increasing the distracting capability of the DG model. Experiments show that our unsupervised generation method with Bart-base greatly surpasses GPT-3.5-turbo performance with only 200 times fewer model parameters. Our proposed unsupervised DG method offers a cost-effective framework for practical reading comprehension applications, without the need of laborious distractor annotation and costly large-size models
Abstract:Prompt-based methods have achieved promising results in most few-shot text classification tasks. However, for readability assessment tasks, traditional prompt methods lackcrucial linguistic knowledge, which has already been proven to be essential. Moreover, previous studies on utilizing linguistic features have shown non-robust performance in few-shot settings and may even impair model performance.To address these issues, we propose a novel prompt-based tuning framework that incorporates rich linguistic knowledge, called Feature Prompt Tuning (FPT). Specifically, we extract linguistic features from the text and embed them into trainable soft prompts. Further, we devise a new loss function to calibrate the similarity ranking order between categories. Experimental results demonstrate that our proposed method FTP not only exhibits a significant performance improvement over the prior best prompt-based tuning approaches, but also surpasses the previous leading methods that incorporate linguistic features. Also, our proposed model significantly outperforms the large language model gpt-3.5-turbo-16k in most cases. Our proposed method establishes a new architecture for prompt tuning that sheds light on how linguistic features can be easily adapted to linguistic-related tasks.
Abstract:Advances in automated essay scoring (AES) have traditionally relied on labeled essays, requiring tremendous cost and expertise for their acquisition. Recently, large language models (LLMs) have achieved great success in various tasks, but their potential is less explored in AES. In this paper, we propose Multi Trait Specialization (MTS), a zero-shot prompting framework to elicit essay scoring capabilities in LLMs. Specifically, we leverage ChatGPT to decompose writing proficiency into distinct traits and generate scoring criteria for each trait. Then, an LLM is prompted to extract trait scores from several conversational rounds, each round scoring one of the traits based on the scoring criteria. Finally, we derive the overall score via trait averaging and min-max scaling. Experimental results on two benchmark datasets demonstrate that MTS consistently outperforms straightforward prompting (Vanilla) in average QWK across all LLMs and datasets, with maximum gains of 0.437 on TOEFL11 and 0.355 on ASAP. Additionally, with the help of MTS, the small-sized Llama2-13b-chat substantially outperforms ChatGPT, facilitating an effective deployment in real applications.
Abstract:In-context learning (ICL) is the trending prompting strategy in the era of large language models (LLMs), where a few examples are demonstrated to evoke LLMs' power for a given task. How to select informative examples remains an open issue. Previous works on in-context example selection for machine translation (MT) focus on superficial word-level features while ignoring deep syntax-level knowledge. In this paper, we propose a syntax-based in-context example selection method for MT, by computing the syntactic similarity between dependency trees using Polynomial Distance. In addition, we propose an ensemble strategy combining examples selected by both word-level and syntax-level criteria. Experimental results between English and 6 common languages indicate that syntax can effectively enhancing ICL for MT, obtaining the highest COMET scores on 11 out of 12 translation directions.