Abstract:As large language models (LLMs) continue to evolve, understanding and quantifying the uncertainty in their predictions is critical for enhancing application credibility. However, the existing literature relevant to LLM uncertainty estimation often relies on heuristic approaches, lacking systematic classification of the methods. In this survey, we clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions. On this basis, we integrate theoretical perspectives, including Bayesian inference, information theory, and ensemble strategies, to categorize various classes of uncertainty estimation methods derived from heuristic approaches. Additionally, we address challenges that arise when applying these methods to LLMs. We also explore techniques for incorporating uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification. Our review provides insights into uncertainty estimation from both definitional and theoretical angles, contributing to a comprehensive understanding of this critical aspect in LLMs. We aim to inspire the development of more reliable and effective uncertainty estimation approaches for LLMs in real-world scenarios.
Abstract:Prompt-based methods have achieved promising results in most few-shot text classification tasks. However, for readability assessment tasks, traditional prompt methods lackcrucial linguistic knowledge, which has already been proven to be essential. Moreover, previous studies on utilizing linguistic features have shown non-robust performance in few-shot settings and may even impair model performance.To address these issues, we propose a novel prompt-based tuning framework that incorporates rich linguistic knowledge, called Feature Prompt Tuning (FPT). Specifically, we extract linguistic features from the text and embed them into trainable soft prompts. Further, we devise a new loss function to calibrate the similarity ranking order between categories. Experimental results demonstrate that our proposed method FTP not only exhibits a significant performance improvement over the prior best prompt-based tuning approaches, but also surpasses the previous leading methods that incorporate linguistic features. Also, our proposed model significantly outperforms the large language model gpt-3.5-turbo-16k in most cases. Our proposed method establishes a new architecture for prompt tuning that sheds light on how linguistic features can be easily adapted to linguistic-related tasks.
Abstract:Advances in automated essay scoring (AES) have traditionally relied on labeled essays, requiring tremendous cost and expertise for their acquisition. Recently, large language models (LLMs) have achieved great success in various tasks, but their potential is less explored in AES. In this paper, we propose Multi Trait Specialization (MTS), a zero-shot prompting framework to elicit essay scoring capabilities in LLMs. Specifically, we leverage ChatGPT to decompose writing proficiency into distinct traits and generate scoring criteria for each trait. Then, an LLM is prompted to extract trait scores from several conversational rounds, each round scoring one of the traits based on the scoring criteria. Finally, we derive the overall score via trait averaging and min-max scaling. Experimental results on two benchmark datasets demonstrate that MTS consistently outperforms straightforward prompting (Vanilla) in average QWK across all LLMs and datasets, with maximum gains of 0.437 on TOEFL11 and 0.355 on ASAP. Additionally, with the help of MTS, the small-sized Llama2-13b-chat substantially outperforms ChatGPT, facilitating an effective deployment in real applications.