Abstract:Articulated object manipulation is a challenging task, requiring constrained motion and adaptive control to handle the unknown dynamics of the manipulated objects. While reinforcement learning (RL) has been widely employed to tackle various scenarios and types of articulated objects, the complexity of these tasks, stemming from multiple intertwined objectives makes learning a control policy in the full task space highly difficult. To address this issue, we propose a Subspace-wise hybrid RL (SwRL) framework that learns policies for each divided task space, or subspace, based on independent objectives. This approach enables adaptive force modulation to accommodate the unknown dynamics of objects. Additionally, it effectively leverages the previously underlooked redundant subspace, thereby maximizing the robot's dexterity. Our method enhances both learning efficiency and task execution performance, as validated through simulations and real-world experiments. Supplementary video is available at https://youtu.be/PkNxv0P8Atk
Abstract:Deterministic quantum computation with one qubit (DQC1) is of significant theoretical and practical interest due to its computational advantages in certain problems, despite its subuniversality with limited quantum resources. In this work, we introduce parameterized DQC1 as a quantum machine learning model. We demonstrate that the gradient of the measurement outcome of a DQC1 circuit with respect to its gate parameters can be computed directly using the DQC1 protocol. This allows for gradient-based optimization of DQC1 circuits, positioning DQC1 as the sole quantum protocol for both training and inference. We then analyze the expressivity of the parameterized DQC1 circuits, characterizing the set of learnable functions, and show that DQC1-based machine learning (ML) is as powerful as quantum neural networks based on universal computation. Our findings highlight the potential of DQC1 as a practical and versatile platform for ML, capable of rivaling more complex quantum computing models while utilizing simpler quantum resources.
Abstract:While learning to align Large Language Models (LLMs) with human preferences has shown remarkable success, aligning these models to meet the diverse user preferences presents further challenges in preserving previous knowledge. This paper examines the impact of personalized preference optimization on LLMs, revealing that the extent of knowledge loss varies significantly with preference heterogeneity. Although previous approaches have utilized the KL constraint between the reference model and the policy model, we observe that they fail to maintain general knowledge and alignment when facing personalized preferences. To this end, we introduce Base-Anchored Preference Optimization (BAPO), a simple yet effective approach that utilizes the initial responses of reference model to mitigate forgetting while accommodating personalized alignment. BAPO effectively adapts to diverse user preferences while minimally affecting global knowledge or general alignment. Our experiments demonstrate the efficacy of BAPO in various setups.
Abstract:Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.
Abstract:Large Language Models (LLMs) hold the potential to perform a variety of text processing tasks and provide textual explanations for proposed actions or decisions. In the era of hybrid work, LLMs can provide intelligent decision support for workers who are designing their hybrid work plans. In particular, they can offer suggestions and explanations to workers balancing numerous decision factors, thereby enhancing their work experience. In this paper, we present a decision support model for workspaces in hybrid work environments, leveraging the reasoning skill of LLMs. We first examine LLM's capability of making suitable workspace suggestions. We find that its reasoning extends beyond the guidelines in the prompt and the LLM can manage the trade-off among the available resources in the workspaces. We conduct an extensive user study to understand workers' decision process for workspace choices and evaluate the effectiveness of the system. We observe that a worker's decision could be influenced by the LLM's suggestions and explanations. The participants in our study find the system to be convenient, regardless of whether reasons are provided or not. Our results show that employees can benefit from the LLM-empowered system for their workspace selection in hybrid workplace.
Abstract:In an ever-evolving world, the dynamic nature of knowledge presents challenges for language models that are trained on static data, leading to outdated encoded information. However, real-world scenarios require models not only to acquire new knowledge but also to overwrite outdated information into updated ones. To address this under-explored issue, we introduce the temporally evolving question answering benchmark, EvolvingQA - a novel benchmark designed for training and evaluating LMs on an evolving Wikipedia database, where the construction of our benchmark is automated with our pipeline using large language models. Our benchmark incorporates question-answering as a downstream task to emulate real-world applications. Through EvolvingQA, we uncover that existing continual learning baselines have difficulty in updating and forgetting outdated knowledge. Our findings suggest that the models fail to learn updated knowledge due to the small weight gradient. Furthermore, we elucidate that the models struggle mostly on providing numerical or temporal answers to questions asking for updated knowledge. Our work aims to model the dynamic nature of real-world information, offering a robust measure for the evolution-adaptability of language models.
Abstract:With the proliferation of social media, accurate detection of hate speech has become critical to ensure safety online. To combat nuanced forms of hate speech, it is important to identify and thoroughly explain hate speech to help users understand its harmful effects. Recent benchmarks have attempted to tackle this issue by training generative models on free-text annotations of implications in hateful text. However, we find significant reasoning gaps in the existing annotations schemes, which may hinder the supervision of detection models. In this paper, we introduce a hate speech detection framework, HARE, which harnesses the reasoning capabilities of large language models (LLMs) to fill these gaps in explanations of hate speech, thus enabling effective supervision of detection models. Experiments on SBIC and Implicit Hate benchmarks show that our method, using model-generated data, consistently outperforms baselines, using existing free-text human annotations. Analysis demonstrates that our method enhances the explanation quality of trained models and improves generalization to unseen datasets. Our code is available at https://github.com/joonkeekim/hare-hate-speech.git.
Abstract:Structured pruning methods have proven effective in reducing the model size and accelerating inference speed in various network architectures such as Transformers. Despite the versatility of encoder-decoder models in numerous NLP tasks, the structured pruning methods on such models are relatively less explored compared to encoder-only models. In this study, we investigate the behavior of the structured pruning of the encoder-decoder models in the decoupled pruning perspective of the encoder and decoder component, respectively. Our findings highlight two insights: (1) the number of decoder layers is the dominant factor of inference speed, and (2) low sparsity in the pruned encoder network enhances generation quality. Motivated by these findings, we propose a simple and effective framework, NASH, that narrows the encoder and shortens the decoder networks of encoder-decoder models. Extensive experiments on diverse generation and inference tasks validate the effectiveness of our method in both speedup and output quality.
Abstract:We introduce NaturalInversion, a novel model inversion-based method to synthesize images that agrees well with the original data distribution without using real data. In NaturalInversion, we propose: (1) a Feature Transfer Pyramid which uses enhanced image prior of the original data by combining the multi-scale feature maps extracted from the pre-trained classifier, (2) a one-to-one approach generative model where only one batch of images are synthesized by one generator to bring the non-linearity to optimization and to ease the overall optimizing process, (3) learnable Adaptive Channel Scaling parameters which are end-to-end trained to scale the output image channel to utilize the original image prior further. With our NaturalInversion, we synthesize images from classifiers trained on CIFAR-10/100 and show that our images are more consistent with original data distribution than prior works by visualization and additional analysis. Furthermore, our synthesized images outperform prior works on various applications such as knowledge distillation and pruning, demonstrating the effectiveness of our proposed method.
Abstract:Knowledge tracing (KT) is a field of study that predicts the future performance of students based on prior performance datasets collected from educational applications such as intelligent tutoring systems, learning management systems, and online courses. Some previous studies on KT have concentrated only on the interpretability of the model, whereas others have focused on enhancing the performance. Models that consider both interpretability and the performance improvement have been insufficient. Moreover, models that focus on performance improvements have not shown an overwhelming performance compared with existing models. In this study, we propose MonaCoBERT, which achieves the best performance on most benchmark datasets and has significant interpretability. MonaCoBERT uses a BERT-based architecture with monotonic convolutional multihead attention, which reflects forgetting behavior of the students and increases the representation power of the model. We can also increase the performance and interpretability using a classical test-theory-based (CTT-based) embedding strategy that considers the difficulty of the question. To determine why MonaCoBERT achieved the best performance and interpret the results quantitatively, we conducted ablation studies and additional analyses using Grad-CAM, UMAP, and various visualization techniques. The analysis results demonstrate that both attention components complement one another and that CTT-based embedding represents information on both global and local difficulties. We also demonstrate that our model represents the relationship between concepts.