Abstract:The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoders model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code will be made publicly available after acceptance.
Abstract:Articulated object manipulation is a challenging task, requiring constrained motion and adaptive control to handle the unknown dynamics of the manipulated objects. While reinforcement learning (RL) has been widely employed to tackle various scenarios and types of articulated objects, the complexity of these tasks, stemming from multiple intertwined objectives makes learning a control policy in the full task space highly difficult. To address this issue, we propose a Subspace-wise hybrid RL (SwRL) framework that learns policies for each divided task space, or subspace, based on independent objectives. This approach enables adaptive force modulation to accommodate the unknown dynamics of objects. Additionally, it effectively leverages the previously underlooked redundant subspace, thereby maximizing the robot's dexterity. Our method enhances both learning efficiency and task execution performance, as validated through simulations and real-world experiments. Supplementary video is available at https://youtu.be/PkNxv0P8Atk