Abstract:Articulated object manipulation is a challenging task, requiring constrained motion and adaptive control to handle the unknown dynamics of the manipulated objects. While reinforcement learning (RL) has been widely employed to tackle various scenarios and types of articulated objects, the complexity of these tasks, stemming from multiple intertwined objectives makes learning a control policy in the full task space highly difficult. To address this issue, we propose a Subspace-wise hybrid RL (SwRL) framework that learns policies for each divided task space, or subspace, based on independent objectives. This approach enables adaptive force modulation to accommodate the unknown dynamics of objects. Additionally, it effectively leverages the previously underlooked redundant subspace, thereby maximizing the robot's dexterity. Our method enhances both learning efficiency and task execution performance, as validated through simulations and real-world experiments. Supplementary video is available at https://youtu.be/PkNxv0P8Atk
Abstract:In this study, we present a novel method for enhancing the computational efficiency of whole-body control for humanoid robots, a challenge accentuated by their high degrees of freedom. The reduced-dimension rigid body dynamics of a floating base robot is constructed by segmenting its kinematic chain into constrained and unconstrained chains, simplifying the dynamics of the unconstrained chain through the centroidal dynamics. The proposed dynamics model is possible to be applied to whole-body control methods, allowing the problem to be divided into two parts for more efficient computation. The efficiency of the framework is demonstrated by comparative experiments in simulations. The calculation results demonstrate a significant reduction in processing time, highlighting an improvement over the times reported in current methodologies. Additionally, the results also shows the computational efficiency increases as the degrees of freedom of robot model increases.