Abstract:Latent Bayesian optimization (LBO) approaches have successfully adopted Bayesian optimization over a continuous latent space by employing an encoder-decoder architecture to address the challenge of optimization in a high dimensional or discrete input space. LBO learns a surrogate model to approximate the black-box objective function in the latent space. However, we observed that most LBO methods suffer from the `misalignment problem`, which is induced by the reconstruction error of the encoder-decoder architecture. It hinders learning an accurate surrogate model and generating high-quality solutions. In addition, several trust region-based LBO methods select the anchor, the center of the trust region, based solely on the objective function value without considering the trust region`s potential to enhance the optimization process. To address these issues, we propose Inversion-based Latent Bayesian Optimization (InvBO), a plug-and-play module for LBO. InvBO consists of two components: an inversion method and a potential-aware trust region anchor selection. The inversion method searches the latent code that completely reconstructs the given target data. The potential-aware trust region anchor selection considers the potential capability of the trust region for better local optimization. Experimental results demonstrate the effectiveness of InvBO on nine real-world benchmarks, such as molecule design and arithmetic expression fitting tasks. Code is available at https://github.com/mlvlab/InvBO.
Abstract:Rectified flow and reflow procedures have significantly advanced fast generation by progressively straightening ordinary differential equation (ODE) flows. They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity. However, we observe that modeling with constant velocity and using reflow procedures have limitations in accurately learning straight trajectories between pairs, resulting in suboptimal performance in few-step generation. To address these limitations, we introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation. CAF introduces acceleration as an additional learnable variable, allowing for more expressive and accurate estimation of the ODE flow. Moreover, we propose two techniques to further improve estimation accuracy: initial velocity conditioning for the acceleration model and a reflow process for the initial velocity. Our comprehensive studies on toy datasets, CIFAR-10, and ImageNet 64x64 demonstrate that CAF outperforms state-of-the-art baselines for one-step generation. We also show that CAF dramatically improves few-step coupling preservation and inversion over Rectified flow. Code is available at \href{https://github.com/mlvlab/CAF}{https://github.com/mlvlab/CAF}.
Abstract:Large Language Models (LLMs) have demonstrated remarkable generalization and instruction-following capabilities with instruction tuning. The advancements in LLMs and instruction tuning have led to the development of Large Vision-Language Models (LVLMs). However, the competency of the LLMs and instruction tuning have been less explored in the molecular domain. Thus, we propose LLaMo: Large Language Model-based Molecular graph assistant, which is an end-to-end trained large molecular graph-language model. To bridge the discrepancy between the language and graph modalities, we present the multi-level graph projector that transforms graph representations into graph tokens by abstracting the output representations of each GNN layer and motif representations with the cross-attention mechanism. We also introduce machine-generated molecular graph instruction data to instruction-tune the large molecular graph-language model for general-purpose molecule and language understanding. Our extensive experiments demonstrate that LLaMo shows the best performance on diverse tasks, such as molecular description generation, property prediction, and IUPAC name prediction. The code of LLaMo is available at https://github.com/mlvlab/LLaMo.
Abstract:Multimodal Large Language Models (MLLMs) have shown promising progress in understanding and analyzing video content. However, processing long videos remains a significant challenge constrained by LLM's context size. To address this limitation, we propose LongVU, a spatiotemporal adaptive compression mechanism thats reduces the number of video tokens while preserving visual details of long videos. Our idea is based on leveraging cross-modal query and inter-frame dependencies to adaptively reduce temporal and spatial redundancy in videos. Specifically, we leverage DINOv2 features to remove redundant frames that exhibit high similarity. Then we utilize text-guided cross-modal query for selective frame feature reduction. Further, we perform spatial token reduction across frames based on their temporal dependencies. Our adaptive compression strategy effectively processes a large number of frames with little visual information loss within given context length. Our LongVU consistently surpass existing methods across a variety of video understanding benchmarks, especially on hour-long video understanding tasks such as VideoMME and MLVU. Given a light-weight LLM, our LongVU also scales effectively into a smaller size with state-of-the-art video understanding performance.
Abstract:Knowledge graph-grounded dialog generation requires retrieving a dialog-relevant subgraph from the given knowledge base graph and integrating it with the dialog history. Previous works typically represent the graph using an external encoder, such as graph neural networks, and retrieve relevant triplets based on the similarity between single-vector representations of triplets and the dialog history. However, these external encoders fail to leverage the rich knowledge of pretrained language models, and the retrieval process is also suboptimal due to the information bottleneck caused by the single-vector abstraction of the dialog history. In this work, we propose Dialog generation with Generative Subgraph Retrieval (DialogGSR), which retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models. For effective generative subgraph retrieval, we introduce two key methods: (i) structure-aware knowledge graph linearization with self-supervised graph-specific tokens and (ii) graph-constrained decoding utilizing graph structural proximity-based entity informativeness scores for valid and relevant generative retrieval. DialogGSR achieves state-of-the-art performance in knowledge graph-grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.
Abstract:Recent advancements in 3D object detection have benefited from multi-modal information from the multi-view cameras and LiDAR sensors. However, the inherent disparities between the modalities pose substantial challenges. We observe that existing multi-modal 3D object detection methods heavily rely on the LiDAR sensor, treating the camera as an auxiliary modality for augmenting semantic details. This often leads to not only underutilization of camera data but also significant performance degradation in scenarios where LiDAR data is unavailable. Additionally, existing fusion methods overlook the detrimental impact of sensor noise induced by environmental changes, on detection performance. In this paper, we propose MEFormer to address the LiDAR over-reliance problem by harnessing critical information for 3D object detection from every available modality while concurrently safeguarding against corrupted signals during the fusion process. Specifically, we introduce Modality Agnostic Decoding (MOAD) that extracts geometric and semantic features with a shared transformer decoder regardless of input modalities and provides promising improvement with a single modality as well as multi-modality. Additionally, our Proximity-based Modality Ensemble (PME) module adaptively utilizes the strengths of each modality depending on the environment while mitigating the effects of a noisy sensor. Our MEFormer achieves state-of-the-art performance of 73.9% NDS and 71.5% mAP in the nuScenes validation set. Extensive analyses validate that our MEFormer improves robustness against challenging conditions such as sensor malfunctions or environmental changes. The source code is available at https://github.com/hanchaa/MEFormer
Abstract:Recent studies on inverse problems have proposed posterior samplers that leverage the pre-trained diffusion models as powerful priors. These attempts have paved the way for using diffusion models in a wide range of inverse problems. However, the existing methods entail computationally demanding iterative sampling procedures and optimize a separate solution for each measurement, which leads to limited scalability and lack of generalization capability across unseen samples. To address these limitations, we propose a novel approach, Diffusion prior-based Amortized Variational Inference (DAVI) that solves inverse problems with a diffusion prior from an amortized variational inference perspective. Specifically, instead of separate measurement-wise optimization, our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements. Extensive experiments on image restoration tasks, e.g., Gaussian deblur, 4$\times$ super-resolution, and box inpainting with two benchmark datasets, demonstrate our approach's superior performance over strong baselines. Code is available at https://github.com/mlvlab/DAVI.
Abstract:Open-vocabulary object detection (OVD) has been studied with Vision-Language Models (VLMs) to detect novel objects beyond the pre-trained categories. Previous approaches improve the generalization ability to expand the knowledge of the detector, using 'positive' pseudo-labels with additional 'class' names, e.g., sock, iPod, and alligator. To extend the previous methods in two aspects, we propose Retrieval-Augmented Losses and visual Features (RALF). Our method retrieves related 'negative' classes and augments loss functions. Also, visual features are augmented with 'verbalized concepts' of classes, e.g., worn on the feet, handheld music player, and sharp teeth. Specifically, RALF consists of two modules: Retrieval Augmented Losses (RAL) and Retrieval-Augmented visual Features (RAF). RAL constitutes two losses reflecting the semantic similarity with negative vocabularies. In addition, RAF augments visual features with the verbalized concepts from a large language model (LLM). Our experiments demonstrate the effectiveness of RALF on COCO and LVIS benchmark datasets. We achieve improvement up to 3.4 box AP$_{50}^{\text{N}}$ on novel categories of the COCO dataset and 3.6 mask AP$_{\text{r}}$ gains on the LVIS dataset. Code is available at https://github.com/mlvlab/RALF .
Abstract:Vision Transformer (ViT) has emerged as a prominent backbone for computer vision. For more efficient ViTs, recent works lessen the quadratic cost of the self-attention layer by pruning or fusing the redundant tokens. However, these works faced the speed-accuracy trade-off caused by the loss of information. Here, we argue that token fusion needs to consider diverse relations between tokens to minimize information loss. In this paper, we propose a Multi-criteria Token Fusion (MCTF), that gradually fuses the tokens based on multi-criteria (e.g., similarity, informativeness, and size of fused tokens). Further, we utilize the one-step-ahead attention, which is the improved approach to capture the informativeness of the tokens. By training the model equipped with MCTF using a token reduction consistency, we achieve the best speed-accuracy trade-off in the image classification (ImageNet1K). Experimental results prove that MCTF consistently surpasses the previous reduction methods with and without training. Specifically, DeiT-T and DeiT-S with MCTF reduce FLOPs by about 44% while improving the performance (+0.5%, and +0.3%) over the base model, respectively. We also demonstrate the applicability of MCTF in various Vision Transformers (e.g., T2T-ViT, LV-ViT), achieving at least 31% speedup without performance degradation. Code is available at https://github.com/mlvlab/MCTF.
Abstract:Pre-trained vision-language models have shown impressive success on various computer vision tasks with their zero-shot generalizability. Recently, prompt learning approaches have been explored to efficiently and effectively adapt the vision-language models to a variety of downstream tasks. However, most existing prompt learning methods suffer from task overfitting since the general knowledge of the pre-trained vision language models is forgotten while the prompts are finetuned on a small data set from a specific target task. To address this issue, we propose a Prompt Meta-Regularization (ProMetaR) to improve the generalizability of prompt learning for vision-language models. Specifically, ProMetaR meta-learns both the regularizer and the soft prompts to harness the task-specific knowledge from the downstream tasks and task-agnostic general knowledge from the vision-language models. Further, ProMetaR augments the task to generate multiple virtual tasks to alleviate the meta-overfitting. In addition, we provide the analysis to comprehend how ProMetaR improves the generalizability of prompt tuning in the perspective of the gradient alignment. Our extensive experiments demonstrate that our ProMetaR improves the generalizability of conventional prompt learning methods under base-to-base/base-to-new and domain generalization settings. The code of ProMetaR is available at https://github.com/mlvlab/ProMetaR.