Abstract:Deep learning architectures with powerful reasoning capabilities have driven significant advancements in autonomous driving technology. Large language models (LLMs) applied in this field can describe driving scenes and behaviors with a level of accuracy similar to human perception, particularly in visual tasks. Meanwhile, the rapid development of edge computing, with its advantage of proximity to data sources, has made edge devices increasingly important in autonomous driving. Edge devices process data locally, reducing transmission delays and bandwidth usage, and achieving faster response times. In this work, we propose a driving behavior narration and reasoning framework that applies LLMs to edge devices. The framework consists of multiple roadside units, with LLMs deployed on each unit. These roadside units collect road data and communicate via 5G NSR/NR networks. Our experiments show that LLMs deployed on edge devices can achieve satisfactory response speeds. Additionally, we propose a prompt strategy to enhance the narration and reasoning performance of the system. This strategy integrates multi-modal information, including environmental, agent, and motion data. Experiments conducted on the OpenDV-Youtube dataset demonstrate that our approach significantly improves performance across both tasks.
Abstract:Autonomous surface vessels (ASV) represent a promising technology to automate water-quality monitoring of lakes. In this work, we use satellite images as a coarse map and plan sampling routes for the robot. However, inconsistency between the satellite images and the actual lake, as well as environmental disturbances such as wind, aquatic vegetation, and changing water levels can make it difficult for robots to visit places suggested by the prior map. This paper presents a robust route-planning algorithm that minimizes the expected total travel distance given these environmental disturbances, which induce uncertainties in the map. We verify the efficacy of our algorithm in simulations of over a thousand Canadian lakes and demonstrate an application of our algorithm in a 3.7 km-long real-world robot experiment on a lake in Northern Ontario, Canada.
Abstract:Effective planning in model-based reinforcement learning (MBRL) and model-predictive control (MPC) relies on the accuracy of the learned dynamics model. In many instances of MBRL and MPC, this model is assumed to be stationary and is periodically re-trained from scratch on state transition experience collected from the beginning of environment interactions. This implies that the time required to train the dynamics model - and the pause required between plan executions - grows linearly with the size of the collected experience. We argue that this is too slow for lifelong robot learning and propose HyperCRL, a method that continually learns the encountered dynamics in a sequence of tasks using task-conditional hypernetworks. Our method has three main attributes: first, it enables constant-time dynamics learning sessions between planning and only needs to store the most recent fixed-size portion of the state transition experience; second, it uses fixed-capacity hypernetworks to represent non-stationary and task-aware dynamics; third, it outperforms existing continual learning alternatives that rely on fixed-capacity networks, and does competitively with baselines that remember an ever increasing coreset of past experience. We show that HyperCRL is effective in continual model-based reinforcement learning in robot locomotion and manipulation scenarios, such as tasks involving pushing and door opening. Our project website with code and videos is at this link http://rvl.cs.toronto.edu/blog/2020/hypercrl/
Abstract:The SAE AutoDrive Challenge is a three-year collegiate competition to develop a self-driving car by 2020. The second year of the competition was held in June 2019 at MCity, a mock town built for self-driving car testing at the University of Michigan. Teams were required to autonomously navigate a series of intersections while handling pedestrians, traffic lights, and traffic signs. Zeus is aUToronto's winning entry in the AutoDrive Challenge. This article describes the system design and development of Zeus as well as many of the lessons learned along the way. This includes details on the team's organizational structure, sensor suite, software components, and performance at the Year 2 competition. With a team of mostly undergraduates and minimal resources, aUToronto has made progress towards a functioning self-driving vehicle, in just two years. This article may prove valuable to researchers looking to develop their own self-driving platform.
Abstract:Inspired by biological swarms, robotic swarms are envisioned to solve real-world problems that are difficult for individual agents. Biological swarms can achieve collective intelligence based on local interactions and simple rules; however, designing effective distributed policies for large-scale robotic swarms to achieve a global objective can be challenging. Although it is often possible to design an optimal centralized strategy for smaller numbers of agents, those methods can fail as the number of agents increases. Motivated by the growing success of machine learning, we develop a deep learning approach that learns distributed coordination policies from centralized policies. In contrast to traditional distributed control approaches, which are usually based on human-designed policies for relatively simple tasks, this learning-based approach can be adapted to more difficult tasks. We demonstrate the efficacy of our proposed approach on two different tasks, the well-known rendezvous problem and a more difficult particle assignment problem. For the latter, no known distributed policy exists. From extensive simulations, it is shown that the performance of the learned coordination policies is comparable to the centralized policies, surpassing state-of-the-art distributed policies. Thereby, our proposed approach provides a promising alternative for real-world coordination problems that would be otherwise computationally expensive to solve or intangible to explore.