Abstract:Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. Existing methods can be categorized into symbolic and neural models. Symbolic models, while precise, struggle with substructure heterogeneity and sparsity, whereas neural models, although effective, generally lack interpretability and cannot handle uncertainty. We propose NeuSymEA, a probabilistic neuro-symbolic framework that combines the strengths of both methods. NeuSymEA models the joint probability of all possible pairs' truth scores in a Markov random field, regulated by a set of rules, and optimizes it with the variational EM algorithm. In the E-step, a neural model parameterizes the truth score distributions and infers missing alignments. In the M-step, the rule weights are updated based on the observed and inferred alignments. To facilitate interpretability, we further design a path-ranking-based explainer upon this framework that generates supporting rules for the inferred alignments. Experiments on benchmarks demonstrate that NeuSymEA not only significantly outperforms baselines in terms of effectiveness and robustness, but also provides interpretable results.
Abstract:Learning from data silos is a difficult task for organizations that need to obtain knowledge of objects that appeared in multiple independent data silos. Objects in multi-organizations, such as government agents, are referred by different identifiers, such as driver license, passport number, and tax file number. The data distributions in data silos are mostly non-IID (Independently and Identically Distributed), labelless, and vertically partitioned (i.e., having different attributes). Privacy concerns harden the above issues. Conditions inhibit enthusiasm for collaborative work. While Federated Learning (FL) has been proposed to address these issues, the difficulty of labeling, namely, label costliness, often hinders optimal model performance. A potential solution lies in contrastive learning, an unsupervised self-learning technique to represent semantic data by contrasting similar data pairs. However, contrastive learning is currently not designed to handle tabular data silos that existed within multiple organizations where data linkage by quasi identifiers are needed. To address these challenges, we propose using semi-supervised contrastive federated learning, which we refer to as Contrastive Federated Learning with Data Silos (CFL). Our approach tackles the aforementioned issues with an integrated solution. Our experimental results demonstrate that CFL outperforms current methods in addressing these challenges and providing improvements in accuracy. Additionally, we present positive results that showcase the advantages of our contrastive federated learning approach in complex client environments.
Abstract:Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. While existing methods heavily rely on human-generated labels, it is prohibitively expensive to incorporate cross-domain experts for annotation in real-world scenarios. The advent of Large Language Models (LLMs) presents new avenues for automating EA with annotations, inspired by their comprehensive capability to process semantic information. However, it is nontrivial to directly apply LLMs for EA since the annotation space in real-world KGs is large. LLMs could also generate noisy labels that may mislead the alignment. To this end, we propose a unified framework, LLM4EA, to effectively leverage LLMs for EA. Specifically, we design a novel active learning policy to significantly reduce the annotation space by prioritizing the most valuable entities based on the entire inter-KG and intra-KG structure. Moreover, we introduce an unsupervised label refiner to continuously enhance label accuracy through in-depth probabilistic reasoning. We iteratively optimize the policy based on the feedback from a base EA model. Extensive experiments demonstrate the advantages of LLM4EA on four benchmark datasets in terms of effectiveness, robustness, and efficiency. Codes are available via https://github.com/chensyCN/llm4ea_official.
Abstract:Knowledge-grounded dialogue (KGD) learns to generate an informative response based on a given dialogue context and external knowledge (\emph{e.g.}, knowledge graphs; KGs). Recently, the emergence of large language models (LLMs) and pre-training techniques has brought great success to knowledge-grounded dialogue. However, when building KGD systems in real applications, there are various real-world noises that are inevitable to face. For example, the dialogue context might involve perturbations such as misspellings and abbreviations. In addition, KGs typically suffer from incompletion and also might contain erroneous and outdated facts. Such real-world noises pose a challenge to the robustness of KGD systems and hinder their applications in the real world. In this paper, we propose an entity-based contrastive learning framework for improving the robustness of KGD. Specifically, we make use of the entity information in a KGD sample to create both its positive and negative samples which involve semantic-irrelevant and semantic-relevant perturbations, respectively. The contrastive learning framework ensures the KGD model is aware of these two types of perturbations, thus generating informative responses with the potentially noisy inputs in real applications. Experimental results on three benchmark datasets show that our method achieves new state-of-the-art performance in terms of automatic evaluation scores, verifying its effectiveness and potentiality. Furthermore, we show that our method can generate better responses than comparison models in both the noisy and the few-shot settings.
Abstract:Entity Alignment (EA), which aims to detect entity mappings (i.e. equivalent entity pairs) in different Knowledge Graphs (KGs), is critical for KG fusion. Neural EA methods dominate current EA research but still suffer from their reliance on labelled mappings. To solve this problem, a few works have explored boosting the training of EA models with self-training, which adds confidently predicted mappings into the training data iteratively. Though the effectiveness of self-training can be glimpsed in some specific settings, we still have very limited knowledge about it. One reason is the existing works concentrate on devising EA models and only treat self-training as an auxiliary tool. To fill this knowledge gap, we change the perspective to self-training to shed light on it. In addition, the existing self-training strategies have limited impact because they introduce either much False Positive noise or a low quantity of True Positive pseudo mappings. To improve self-training for EA, we propose exploiting the dependencies between entities, a particularity of EA, to suppress the noise without hurting the recall of True Positive mappings. Through extensive experiments, we show that the introduction of dependency makes the self-training strategy for EA reach a new level. The value of self-training in alleviating the reliance on annotation is actually much higher than what has been realised. Furthermore, we suggest future study on smart data annotation to break the ceiling of EA performance.
Abstract:Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
Abstract:Entity alignment is a crucial task in knowledge graph fusion. However, most entity alignment approaches have the scalability problem. Recent methods address this issue by dividing large KGs into small blocks for embedding and alignment learning in each. However, such a partitioning and learning process results in an excessive loss of structure and alignment. Therefore, in this work, we propose a scalable GNN-based entity alignment approach to reduce the structure and alignment loss from three perspectives. First, we propose a centrality-based subgraph generation algorithm to recall some landmark entities serving as the bridges between different subgraphs. Second, we introduce self-supervised entity reconstruction to recover entity representations from incomplete neighborhood subgraphs, and design cross-subgraph negative sampling to incorporate entities from other subgraphs in alignment learning. Third, during the inference process, we merge the embeddings of subgraphs to make a single space for alignment search. Experimental results on the benchmark OpenEA dataset and the proposed large DBpedia1M dataset verify the effectiveness of our approach.
Abstract:Entity Alignment (EA) aims to match equivalent entities that refer to the same real-world objects and is a key step for Knowledge Graph (KG) fusion. Most neural EA models cannot be applied to large-scale real-life KGs due to their excessive consumption of GPU memory and time. One promising solution is to divide a large EA task into several subtasks such that each subtask only needs to match two small subgraphs of the original KGs. However, it is challenging to divide the EA task without losing effectiveness. Existing methods display low coverage of potential mappings, insufficient evidence in context graphs, and largely differing subtask sizes. In this work, we design the DivEA framework for large-scale EA with high-quality task division. To include in the EA subtasks a high proportion of the potential mappings originally present in the large EA task, we devise a counterpart discovery method that exploits the locality principle of the EA task and the power of trained EA models. Unique to our counterpart discovery method is the explicit modelling of the chance of a potential mapping. We also introduce an evidence passing mechanism to quantify the informativeness of context entities and find the most informative context graphs with flexible control of the subtask size. Extensive experiments show that DivEA achieves higher EA performance than alternative state-of-the-art solutions.
Abstract:Entity alignment is to find identical entities in different knowledge graphs. Although embedding-based entity alignment has recently achieved remarkable progress, training data insufficiency remains a critical challenge. Conventional semi-supervised methods also suffer from the incorrect entity alignment in newly proposed training data. To resolve these issues, we design an iterative cycle-teaching framework for semi-supervised entity alignment. The key idea is to train multiple entity alignment models (called aligners) simultaneously and let each aligner iteratively teach its successor the proposed new entity alignment. We propose a diversity-aware alignment selection method to choose reliable entity alignment for each aligner. We also design a conflict resolution mechanism to resolve the alignment conflict when combining the new alignment of an aligner and that from its teacher. Besides, considering the influence of cycle-teaching order, we elaborately design a strategy to arrange the optimal order that can maximize the overall performance of multiple aligners. The cycle-teaching process can break the limitations of each model's learning capability and reduce the noise in new training data, leading to improved performance. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed cycle-teaching framework, which significantly outperforms the state-of-the-art models when the training data is insufficient and the new entity alignment has much noise.
Abstract:Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. Previous attempts at entity alignment have explored different KG structures, such as neighborhood-based and path-based contexts, to learn entity embeddings, but they are limited in capturing the multi-context features. Moreover, most approaches directly utilize the embedding similarity to determine entity alignment without considering the global interaction among entities and relations. In this work, we propose an Informed Multi-context Entity Alignment (IMEA) model to address these issues. In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts, and design holistic reasoning to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality. The alignment evidence obtained from holistic reasoning is further injected back into the Transformer via the proposed soft label editing to inform embedding learning. Experimental results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.