Abstract:With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by systematically introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
Abstract:We derive and investigate two DPO variants that explicitly model the possibility of declaring a tie in pair-wise comparisons. We replace the Bradley-Terry model in DPO with two well-known modeling extensions, by Rao and Kupper and by Davidson, that assign probability to ties as alternatives to clear preferences. Our experiments in neural machine translation and summarization show that explicitly labeled ties can be added to the datasets for these DPO variants without the degradation in task performance that is observed when the same tied pairs are presented to DPO. We find empirically that the inclusion of ties leads to stronger regularization with respect to the reference policy as measured by KL divergence, and we see this even for DPO in its original form. These findings motivate and enable the inclusion of tied pairs in preference optimization as opposed to simply discarding them.
Abstract:The Directed Acyclic Transformer is a fast non-autoregressive (NAR) model that performs well in Neural Machine Translation. Two issues prevent its application to general Natural Language Generation (NLG) tasks: frequent Out-Of-Vocabulary (OOV) errors and the inability to faithfully generate entity names. We introduce Control-DAG, a constrained decoding algorithm for our Directed Acyclic T5 (DA-T5) model which offers lexical, vocabulary and length control. We show that Control-DAG significantly enhances DA-T5 on the Schema Guided Dialogue and the DART datasets, establishing strong NAR results for Task-Oriented Dialogue and Data-to-Text NLG.
Abstract:Two approaches have emerged to input images into large language models (LLMs). The first is to caption images into natural language. The second is to map image feature embeddings into the domain of the LLM and pass the mapped embeddings directly to the LLM. The majority of recent few-shot multimodal work reports performance using architectures that employ variations of one of these two approaches. But they overlook an important comparison between them. We design a controlled and focused experiment to compare these two approaches to few-shot visual question answering (VQA) with LLMs. Our findings indicate that for Flan-T5 XL, a 3B parameter LLM, connecting visual embeddings directly to the LLM embedding space does not guarantee improved performance over using image captions. In the zero-shot regime, we find using textual image captions is better. In the few-shot regimes, how the in-context examples are selected determines which is better.
Abstract:Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
Abstract:Minimum Bayes Risk (MBR) decoding can significantly improve translation performance of Multilingual Large Language Models (MLLMs). However, MBR decoding is computationally expensive and in this paper, we show how recently developed Reinforcement Learning (RL) technique, Direct Preference Optimization (DPO) can be used to fine-tune MLLMs so that we get the gains from MBR without the additional computation in inference. Our fine-tuned models have significantly improved performance on multiple NMT test sets compared to base MLLMs without preference optimization. Our method boosts the translation performance of MLLMs using relatively small monolingual fine-tuning sets.
Abstract:Hateful memes have emerged as a significant concern on the Internet. These memes, which are a combination of image and text, often convey messages vastly different from their individual meanings. Thus, detecting hateful memes requires the system to jointly understand the visual and textual modalities. However, our investigation reveals that the embedding space of existing CLIP-based systems lacks sensitivity to subtle differences in memes that are vital for correct hatefulness classification. To address this issue, we propose constructing a hatefulness-aware embedding space through retrieval-guided contrastive training. Specifically, we add an auxiliary loss that utilizes hard negative and pseudo-gold samples to train the embedding space. Our approach achieves state-of-the-art performance on the HatefulMemes dataset with an AUROC of 86.7. Notably, our approach outperforms much larger fine-tuned Large Multimodal Models like Flamingo and LLaVA. Finally, we demonstrate a retrieval-based hateful memes detection system, which is capable of making hatefulness classification based on data unseen in training from a database. This allows developers to update the hateful memes detection system by simply adding new data without retraining, a desirable feature for real services in the constantly-evolving landscape of hateful memes on the Internet.
Abstract:Knowledge-based Visual Question Answering (KB-VQA) requires VQA systems to utilize knowledge from existing knowledge bases to answer visually-grounded questions. Retrieval-Augmented Visual Question Answering (RA-VQA), a strong framework to tackle KB-VQA, first retrieves related documents with Dense Passage Retrieval (DPR) and then uses them to answer questions. This paper proposes Fine-grained Late-interaction Multi-modal Retrieval (FLMR) which significantly improves knowledge retrieval in RA-VQA. FLMR addresses two major limitations in RA-VQA's retriever: (1) the image representations obtained via image-to-text transforms can be incomplete and inaccurate and (2) relevance scores between queries and documents are computed with one-dimensional embeddings, which can be insensitive to finer-grained relevance. FLMR overcomes these limitations by obtaining image representations that complement those from the image-to-text transforms using a vision model aligned with an existing text-based retriever through a simple alignment network. FLMR also encodes images and questions using multi-dimensional embeddings to capture finer-grained relevance between queries and documents. FLMR significantly improves the original RA-VQA retriever's PRRecall@5 by approximately 8\%. Finally, we equipped RA-VQA with two state-of-the-art large multi-modal/language models to achieve $\sim61\%$ VQA score in the OK-VQA dataset.
Abstract:Schema-guided dialogue state trackers can generalise to new domains without further training, yet they are sensitive to the writing style of the schemata. Augmenting the training set with human or synthetic schema paraphrases improves the model robustness to these variations but can be either costly or difficult to control. We propose to circumvent these issues by grounding the state tracking model in knowledge-seeking turns collected from the dialogue corpus as well as the schema. Including these turns in prompts during finetuning and inference leads to marked improvements in model robustness, as demonstrated by large average joint goal accuracy and schema sensitivity improvements on SGD and SGD-X.
Abstract:The widely used Fact-based Visual Question Answering (FVQA) dataset contains visually-grounded questions that require information retrieval using common sense knowledge graphs to answer. It has been observed that the original dataset is highly imbalanced and concentrated on a small portion of its associated knowledge graph. We introduce FVQA 2.0 which contains adversarial variants of test questions to address this imbalance. We show that systems trained with the original FVQA train sets can be vulnerable to adversarial samples and we demonstrate an augmentation scheme to reduce this vulnerability without human annotations.