Abstract:Band selection plays a crucial role in hyperspectral image classification by removing redundant and noisy bands and retaining discriminative ones. However, most existing deep learning-based methods are aimed at dealing with a specific band selection dataset, and need to retrain parameters for new datasets, which significantly limits their generalizability.To address this issue, a novel multi-teacher multi-objective meta-learning network (M$^3$BS) is proposed for zero-shot hyperspectral band selection. In M$^3$BS, a generalizable graph convolution network (GCN) is constructed to generate dataset-agnostic base, and extract compatible meta-knowledge from multiple band selection tasks. To enhance the ability of meta-knowledge extraction, multiple band selection teachers are introduced to provide diverse high-quality experiences.strategy Finally, subsequent classification tasks are attached and jointly optimized with multi-teacher band selection tasks through multi-objective meta-learning in an end-to-end trainable way. Multi-objective meta-learning guarantees to coordinate diverse optimization objectives automatically and adapt to various datasets simultaneously. Once the optimization is accomplished, the acquired meta-knowledge can be directly transferred to unseen datasets without any retraining or fine-tuning. Experimental results demonstrate the effectiveness and efficiency of our proposed method on par with state-of-the-art baselines for zero-shot hyperspectral band selection.
Abstract:Virtual engines have the capability to generate dense depth maps for various synthetic scenes, making them invaluable for training depth estimation models. However, synthetic colors often exhibit significant discrepancies compared to real-world colors, thereby posing challenges for depth estimation in real-world scenes, particularly in complex and uncertain environments encountered in unsupervised monocular depth estimation tasks. To address this issue, we propose Back2Color, a framework that predicts realistic colors from depth utilizing a model trained on real-world data, thus facilitating the transformation of synthetic colors into real-world counterparts. Additionally, by employing the Syn-Real CutMix method for joint training with both real-world unsupervised and synthetic supervised depth samples, we achieve improved performance in monocular depth estimation for real-world scenes. Moreover, to comprehensively address the impact of non-rigid motions on depth estimation, we propose an auto-learning uncertainty temporal-spatial fusion method (Auto-UTSF), which integrates the benefits of unsupervised learning in both temporal and spatial dimensions. Furthermore, we design a depth estimation network (VADepth) based on the Vision Attention Network. Our Back2Color framework demonstrates state-of-the-art performance, as evidenced by improvements in performance metrics and the production of fine-grained details in our predictions, particularly on challenging datasets such as Cityscapes for unsupervised depth estimation.
Abstract:3D object detection is a fundamental task in scene understanding. Numerous research efforts have been dedicated to better incorporate Hough voting into the 3D object detection pipeline. However, due to the noisy, cluttered, and partial nature of real 3D scans, existing voting-based methods often receive votes from the partial surfaces of individual objects together with severe noises, leading to sub-optimal detection performance. In this work, we focus on the distributional properties of point clouds and formulate the voting process as generating new points in the high-density region of the distribution of object centers. To achieve this, we propose a new method to move random 3D points toward the high-density region of the distribution by estimating the score function of the distribution with a noise conditioned score network. Specifically, we first generate a set of object center proposals to coarsely identify the high-density region of the object center distribution. To estimate the score function, we perturb the generated object center proposals by adding normalized Gaussian noise, and then jointly estimate the score function of all perturbed distributions. Finally, we generate new votes by moving random 3D points to the high-density region of the object center distribution according to the estimated score function. Extensive experiments on two large scale indoor 3D scene datasets, SUN RGB-D and ScanNet V2, demonstrate the superiority of our proposed method. The code will be released at https://github.com/HHrEtvP/DiffVote.
Abstract:Generating realistic 3D scenes is challenging due to the complexity of room layouts and object geometries.We propose a sketch based knowledge enhanced diffusion architecture (SEK) for generating customized, diverse, and plausible 3D scenes. SEK conditions the denoising process with a hand-drawn sketch of the target scene and cues from an object relationship knowledge base. We first construct an external knowledge base containing object relationships and then leverage knowledge enhanced graph reasoning to assist our model in understanding hand-drawn sketches. A scene is represented as a combination of 3D objects and their relationships, and then incrementally diffused to reach a Gaussian distribution.We propose a 3D denoising scene transformer that learns to reverse the diffusion process, conditioned by a hand-drawn sketch along with knowledge cues, to regressively generate the scene including the 3D object instances as well as their layout. Experiments on the 3D-FRONT dataset show that our model improves FID, CKL by 17.41%, 37.18% in 3D scene generation and FID, KID by 19.12%, 20.06% in 3D scene completion compared to the nearest competitor DiffuScene.
Abstract:Directly learning to model 4D content, including shape, color and motion, is challenging. Existing methods depend on skeleton-based motion control and offer limited continuity in detail. To address this, we propose a novel framework that generates coherent 4D sequences with animation of 3D shapes under given conditions with dynamic evolution of shape and color over time through integrative latent mapping. We first employ an integrative latent unified representation to encode shape and color information of each detailed 3D geometry frame. The proposed skeleton-free latent 4D sequence joint representation allows us to leverage diffusion models in a low-dimensional space to control the generation of 4D sequences. Finally, temporally coherent 4D sequences are generated conforming well to the input images and text prompts. Extensive experiments on the ShapeNet, 3DBiCar and DeformingThings4D datasets for several tasks demonstrate that our method effectively learns to generate quality 3D shapes with color and 4D mesh animations, improving over the current state-of-the-art. Source code will be released.
Abstract:Mainstreamed weakly supervised road extractors rely on highly confident pseudo-labels propagated from scribbles, and their performance often degrades gradually as the image scenes tend various. We argue that such degradation is due to the poor model's invariance to scenes with different complexities, whereas existing solutions to this problem are commonly based on crafted priors that cannot be derived from scribbles. To eliminate the reliance on such priors, we propose a novel Structure-aware Mixup and Invariance Learning framework (SA-MixNet) for weakly supervised road extraction that improves the model invariance in a data-driven manner. Specifically, we design a structure-aware Mixup scheme to paste road regions from one image onto another for creating an image scene with increased complexity while preserving the road's structural integrity. Then an invariance regularization is imposed on the predictions of constructed and origin images to minimize their conflicts, which thus forces the model to behave consistently on various scenes. Moreover, a discriminator-based regularization is designed for enhancing the connectivity meanwhile preserving the structure of roads. Combining these designs, our framework demonstrates superior performance on the DeepGlobe, Wuhan, and Massachusetts datasets outperforming the state-of-the-art techniques by 1.47%, 2.12%, 4.09% respectively in IoU metrics, and showing its potential of plug-and-play. The code will be made publicly available.
Abstract:Previous deep learning-based event denoising methods mostly suffer from poor interpretability and difficulty in real-time processing due to their complex architecture designs. In this paper, we propose window-based event denoising, which simultaneously deals with a stack of events while existing element-based denoising focuses on one event each time. Besides, we give the theoretical analysis based on probability distributions in both temporal and spatial domains to improve interpretability. In temporal domain, we use timestamp deviations between processing events and central event to judge the temporal correlation and filter out temporal-irrelevant events. In spatial domain, we choose maximum a posteriori (MAP) to discriminate real-world event and noise, and use the learned convolutional sparse coding to optimize the objective function. Based on the theoretical analysis, we build Temporal Window (TW) module and Soft Spatial Feature Embedding (SSFE) module to process temporal and spatial information separately, and construct a novel multi-scale window-based event denoising network, named MSDNet. The high denoising accuracy and fast running speed of our MSDNet enables us to achieve real-time denoising in complex scenes. Extensive experimental results verify the effectiveness and robustness of our MSDNet. Our algorithm can remove event noise effectively and efficiently and improve the performance of downstream tasks.
Abstract:Recovering a dense depth image from sparse LiDAR scans is a challenging task. Despite the popularity of color-guided methods for sparse-to-dense depth completion, they treated pixels equally during optimization, ignoring the uneven distribution characteristics in the sparse depth map and the accumulated outliers in the synthesized ground truth. In this work, we introduce uncertainty-driven loss functions to improve the robustness of depth completion and handle the uncertainty in depth completion. Specifically, we propose an explicit uncertainty formulation for robust depth completion with Jeffrey's prior. A parametric uncertain-driven loss is introduced and translated to new loss functions that are robust to noisy or missing data. Meanwhile, we propose a multiscale joint prediction model that can simultaneously predict depth and uncertainty maps. The estimated uncertainty map is also used to perform adaptive prediction on the pixels with high uncertainty, leading to a residual map for refining the completion results. Our method has been tested on KITTI Depth Completion Benchmark and achieved the state-of-the-art robustness performance in terms of MAE, IMAE, and IRMSE metrics.
Abstract:Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.
Abstract:Single Image Super-Resolution (SISR) tasks have achieved significant performance with deep neural networks. However, the large number of parameters in CNN-based methods for SISR tasks require heavy computations. Although several efficient SISR models have been recently proposed, most are handcrafted and thus lack flexibility. In this work, we propose a novel differentiable Neural Architecture Search (NAS) approach on both the cell-level and network-level to search for lightweight SISR models. Specifically, the cell-level search space is designed based on an information distillation mechanism, focusing on the combinations of lightweight operations and aiming to build a more lightweight and accurate SR structure. The network-level search space is designed to consider the feature connections among the cells and aims to find which information flow benefits the cell most to boost the performance. Unlike the existing Reinforcement Learning (RL) or Evolutionary Algorithm (EA) based NAS methods for SISR tasks, our search pipeline is fully differentiable, and the lightweight SISR models can be efficiently searched on both the cell-level and network-level jointly on a single GPU. Experiments show that our methods can achieve state-of-the-art performance on the benchmark datasets in terms of PSNR, SSIM, and model complexity with merely 68G Multi-Adds for $\times 2$ and 18G Multi-Adds for $\times 4$ SR tasks. Code will be available at \url{https://github.com/DawnHH/DLSR-PyTorch}.