Abstract:Scene Graph Generation (SGG) is a high-level visual understanding and reasoning task aimed at extracting entities (such as objects) and their interrelationships from images. Significant progress has been made in the study of SGG in natural images in recent years, but its exploration in the domain of remote sensing images remains very limited. The complex characteristics of remote sensing images necessitate higher time and manual interpretation costs for annotation compared to natural images. The lack of a large-scale public SGG benchmark is a major impediment to the advancement of SGG-related research in aerial imagery. In this paper, we introduce the first publicly available large-scale, million-level relation dataset in the field of remote sensing images which is named as ReCon1M. Specifically, our dataset is built upon Fair1M and comprises 21,392 images. It includes annotations for 859,751 object bounding boxes across 60 different categories, and 1,149,342 relation triplets across 64 categories based on these bounding boxes. We provide a detailed description of the dataset's characteristics and statistical information. We conducted two object detection tasks and three sub-tasks within SGG on this dataset, assessing the performance of mainstream methods on these tasks.
Abstract:As drone technology advances, using unmanned aerial vehicles for aerial surveys has become the dominant trend in modern low-altitude remote sensing. The surge in aerial video data necessitates accurate prediction for future scenarios and motion states of the interested target, particularly in applications like traffic management and disaster response. Existing video prediction methods focus solely on predicting future scenes (video frames), suffering from the neglect of explicitly modeling target's motion states, which is crucial for aerial video interpretation. To address this issue, we introduce a novel task called Target-Aware Aerial Video Prediction, aiming to simultaneously predict future scenes and motion states of the target. Further, we design a model specifically for this task, named TAFormer, which provides a unified modeling approach for both video and target motion states. Specifically, we introduce Spatiotemporal Attention (STA), which decouples the learning of video dynamics into spatial static attention and temporal dynamic attention, effectively modeling the scene appearance and motion. Additionally, we design an Information Sharing Mechanism (ISM), which elegantly unifies the modeling of video and target motion by facilitating information interaction through two sets of messenger tokens. Moreover, to alleviate the difficulty of distinguishing targets in blurry predictions, we introduce Target-Sensitive Gaussian Loss (TSGL), enhancing the model's sensitivity to both target's position and content. Extensive experiments on UAV123VP and VisDroneVP (derived from single-object tracking datasets) demonstrate the exceptional performance of TAFormer in target-aware video prediction, showcasing its adaptability to the additional requirements of aerial video interpretation for target awareness.
Abstract:Extrapolating future weather radar echoes from past observations is a complex task vital for precipitation nowcasting. The spatial morphology and temporal evolution of radar echoes exhibit a certain degree of correlation, yet they also possess independent characteristics. {Existing methods learn unified spatial and temporal representations in a highly coupled feature space, emphasizing the correlation between spatial and temporal features but neglecting the explicit modeling of their independent characteristics, which may result in mutual interference between them.} To effectively model the spatiotemporal dynamics of radar echoes, we propose a Spatial-Frequency-Temporal correlation-decoupling Transformer (SFTformer). The model leverages stacked multiple SFT-Blocks to not only mine the correlation of the spatiotemporal dynamics of echo cells but also avoid the mutual interference between the temporal modeling and the spatial morphology refinement by decoupling them. Furthermore, inspired by the practice that weather forecast experts effectively review historical echo evolution to make accurate predictions, SFTfomer incorporates a joint training paradigm for historical echo sequence reconstruction and future echo sequence prediction. Experimental results on the HKO-7 dataset and ChinaNorth-2021 dataset demonstrate the superior performance of SFTfomer in short(1h), mid(2h), and long-term(3h) precipitation nowcasting.