Abstract:Low-light raw image denoising plays a crucial role in mobile photography, and learning-based methods have become the mainstream approach. Training the learning-based methods with synthetic data emerges as an efficient and practical alternative to paired real data. However, the quality of synthetic data is inherently limited by the low accuracy of the noise model, which decreases the performance of low-light raw image denoising. In this paper, we develop a novel framework for accurate noise modeling that learns a physics-guided noise neural proxy (PNNP) from dark frames. PNNP integrates three efficient techniques: physics-guided noise decoupling (PND), physics-guided proxy model (PPM), and differentiable distribution-oriented loss (DDL). The PND decouples the dark frame into different components and handles different levels of noise in a flexible manner, which reduces the complexity of the noise neural proxy. The PPM incorporates physical priors to effectively constrain the generated noise, which promotes the accuracy of the noise neural proxy. The DDL provides explicit and reliable supervision for noise modeling, which promotes the precision of the noise neural proxy. Extensive experiments on public low-light raw image denoising datasets and real low-light imaging scenarios demonstrate the superior performance of our PNNP framework.
Abstract:Image denoising is a fundamental problem in computational photography, where achieving high-quality perceptual performance with low distortion is highly demanding. Current methods either struggle with perceptual performance or suffer from significant distortion. Recently, the emerging diffusion model achieves state-of-the-art performance in various tasks, and its denoising mechanism demonstrates great potential for image denoising. However, stimulating diffusion models for image denoising is not straightforward and requires solving several critical problems. On the one hand, the input inconsistency hinders the connection of diffusion models and image denoising. On the other hand, the content inconsistency between the generated image and the desired denoised image introduces additional distortion. To tackle these problems, we present a novel strategy called Diffusion Model for Image Denoising (DMID) by understanding and rethinking the diffusion model from a denoising perspective. Our DMID strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained diffusion model, and an adaptive ensembling method that reduces distortion in the denoised image. Our DMID strategy achieves state-of-the-art performance on all distortion-based and perceptual metrics, for both Gaussian and real-world image denoising.
Abstract:Low-light raw denoising is an important and valuable task in computational photography where learning-based methods trained with paired real data are mainstream. However, the limited data volume and complicated noise distribution have constituted a learnability bottleneck for paired real data, which limits the denoising performance of learning-based methods. To address this issue, we present a learnability enhancement strategy to reform paired real data according to noise modeling. Our strategy consists of two efficient techniques: shot noise augmentation (SNA) and dark shading correction (DSC). Through noise model decoupling, SNA improves the precision of data mapping by increasing the data volume and DSC reduces the complexity of data mapping by reducing the noise complexity. Extensive results on the public datasets and real imaging scenarios collectively demonstrate the state-of-the-art performance of our method.