Carnegie Mellon University
Abstract:Strategic interactions can be represented more concisely, and analyzed and solved more efficiently, if we are aware of the symmetries within the multiagent system. Symmetries also have conceptual implications, for example for equilibrium selection. We study the computational complexity of identifying and using symmetries. Using the classical framework of normal-form games, we consider game symmetries that can be across some or all players and/or actions. We find a strong connection between game symmetries and graph automorphisms, yielding graph automorphism and graph isomorphism completeness results for characterizing the symmetries present in a game. On the other hand, we also show that the problem becomes polynomial-time solvable when we restrict the consideration of actions in one of two ways. Next, we investigate when exactly game symmetries can be successfully leveraged for Nash equilibrium computation. We show that finding a Nash equilibrium that respects a given set of symmetries is PPAD- and CLS-complete in general-sum and team games respectively -- that is, exactly as hard as Brouwer fixed point and gradient descent problems. Finally, we present polynomial-time methods for the special cases where we are aware of a vast number of symmetries, or where the game is two-player zero-sum and we do not even know the symmetries.
Abstract:We study partially observable assistance games (POAGs), a model of the human-AI value alignment problem which allows the human and the AI assistant to have partial observations. Motivated by concerns of AI deception, we study a qualitatively new phenomenon made possible by partial observability: would an AI assistant ever have an incentive to interfere with the human's observations? First, we prove that sometimes an optimal assistant must take observation-interfering actions, even when the human is playing optimally, and even when there are otherwise-equivalent actions available that do not interfere with observations. Though this result seems to contradict the classic theorem from single-agent decision making that the value of perfect information is nonnegative, we resolve this seeming contradiction by developing a notion of interference defined on entire policies. This can be viewed as an extension of the classic result that the value of perfect information is nonnegative into the cooperative multiagent setting. Second, we prove that if the human is simply making decisions based on their immediate outcomes, the assistant might need to interfere with observations as a way to query the human's preferences. We show that this incentive for interference goes away if the human is playing optimally, or if we introduce a communication channel for the human to communicate their preferences to the assistant. Third, we show that if the human acts according to the Boltzmann model of irrationality, this can create an incentive for the assistant to interfere with observations. Finally, we use an experimental model to analyze tradeoffs faced by the AI assistant in practice when considering whether or not to take observation-interfering actions.
Abstract:We study equilibrium computation with extensive-form correlation in two-player turn-taking stochastic games. Our main results are two-fold: (1) We give an algorithm for computing a Stackelberg extensive-form correlated equilibrium (SEFCE), which runs in time polynomial in the size of the game, as well as the number of bits required to encode each input number. (2) We give an efficient algorithm for approximately computing an optimal extensive-form correlated equilibrium (EFCE) up to machine precision, i.e., the algorithm achieves approximation error $\varepsilon$ in time polynomial in the size of the game, as well as $\log(1 / \varepsilon)$. Our algorithm for SEFCE is the first polynomial-time algorithm for equilibrium computation with commitment in such a general class of stochastic games. Existing algorithms for SEFCE typically make stronger assumptions such as no chance moves, and are designed for extensive-form games in the less succinct tree form. Our algorithm for approximately optimal EFCE is, to our knowledge, the first algorithm that achieves 3 desiderata simultaneously: approximate optimality, polylogarithmic dependency on the approximation error, and compatibility with stochastic games in the more succinct graph form. Existing algorithms achieve at most 2 of these desiderata, often also relying on additional technical assumptions.
Abstract:In Tennenholtz's program equilibrium, players of a game submit programs to play on their behalf. Each program receives the other programs' source code and outputs an action. This can model interactions involving AI agents, mutually transparent institutions, or commitments. Tennenholtz (2004) proves a folk theorem for program games, but the equilibria constructed are very brittle. We therefore consider simulation-based programs -- i.e., programs that work by running opponents' programs. These are relatively robust (in particular, two programs that act the same are treated the same) and are more practical than proof-based approaches. Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot is such an approach. Unfortunately, it is not generally applicable to games of three or more players, and only allows for a limited range of equilibria in two player games. In this paper, we propose a generalisation to Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. We prove a folk theorem for our programs in a setting with access to a shared source of randomness. We then characterise their equilibria in a setting without shared randomness. Both with and without shared randomness, we achieve a much wider range of equilibria than Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. Finally, we explore the limits of simulation-based program equilibrium, showing that the Tennenholtz folk theorem cannot be attained by simulation-based programs without access to shared randomness.
Abstract:In Newcomb's problem, causal decision theory (CDT) recommends two-boxing and thus comes apart from evidential decision theory (EDT) and ex ante policy optimisation (which prescribe one-boxing). However, in Newcomb's problem, you should perhaps believe that with some probability you are in a simulation run by the predictor to determine whether to put a million dollars into the opaque box. If so, then causal decision theory might recommend one-boxing in order to cause the predictor to fill the opaque box. In this paper, we study generalisations of this approach. That is, we consider general Newcomblike problems and try to form reasonable self-locating beliefs under which CDT's recommendations align with an EDT-like notion of ex ante policy optimisation. We consider approaches in which we model the world as running simulations of the agent, and an approach not based on such models (which we call 'Generalised Generalised Thirding', or GGT). For each approach, we characterise the resulting CDT policies, and prove that under certain conditions, these include the ex ante optimal policies.
Abstract:AI agents will be predictable in certain ways that traditional agents are not. Where and how can we leverage this predictability in order to improve social welfare? We study this question in a game-theoretic setting where one agent can pay a fixed cost to simulate the other in order to learn its mixed strategy. As a negative result, we prove that, in contrast to prior work on pure-strategy simulation, enabling mixed-strategy simulation may no longer lead to improved outcomes for both players in all so-called "generalised trust games". In fact, mixed-strategy simulation does not help in any game where the simulatee's action can depend on that of the simulator. We also show that, in general, deciding whether simulation introduces Pareto-improving Nash equilibria in a given game is NP-hard. As positive results, we establish that mixed-strategy simulation can improve social welfare if the simulator has the option to scale their level of trust, if the players face challenges with both trust and coordination, or if maintaining some level of privacy is essential for enabling cooperation.
Abstract:Preference elicitation frameworks feature heavily in the research on participatory ethical AI tools and provide a viable mechanism to enquire and incorporate the moral values of various stakeholders. As part of the elicitation process, surveys about moral preferences, opinions, and judgments are typically administered only once to each participant. This methodological practice is reasonable if participants' responses are stable over time such that, all other relevant factors being held constant, their responses today will be the same as their responses to the same questions at a later time. However, we do not know how often that is the case. It is possible that participants' true moral preferences change, are subject to temporary moods or whims, or are influenced by environmental factors we don't track. If participants' moral responses are unstable in such ways, it would raise important methodological and theoretical issues for how participants' true moral preferences, opinions, and judgments can be ascertained. We address this possibility here by asking the same survey participants the same moral questions about which patient should receive a kidney when only one is available ten times in ten different sessions over two weeks, varying only presentation order across sessions. We measured how often participants gave different responses to simple (Study One) and more complicated (Study Two) repeated scenarios. On average, the fraction of times participants changed their responses to controversial scenarios was around 10-18% across studies, and this instability is observed to have positive associations with response time and decision-making difficulty. We discuss the implications of these results for the efficacy of moral preference elicitation, highlighting the role of response instability in causing value misalignment between stakeholders and AI tools trained on their moral judgments.
Abstract:Computational preference elicitation methods are tools used to learn people's preferences quantitatively in a given context. Recent works on preference elicitation advocate for active learning as an efficient method to iteratively construct queries (framed as comparisons between context-specific cases) that are likely to be most informative about an agent's underlying preferences. In this work, we argue that the use of active learning for moral preference elicitation relies on certain assumptions about the underlying moral preferences, which can be violated in practice. Specifically, we highlight the following common assumptions (a) preferences are stable over time and not sensitive to the sequence of presented queries, (b) the appropriate hypothesis class is chosen to model moral preferences, and (c) noise in the agent's responses is limited. While these assumptions can be appropriate for preference elicitation in certain domains, prior research on moral psychology suggests they may not be valid for moral judgments. Through a synthetic simulation of preferences that violate the above assumptions, we observe that active learning can have similar or worse performance than a basic random query selection method in certain settings. Yet, simulation results also demonstrate that active learning can still be viable if the degree of instability or noise is relatively small and when the agent's preferences can be approximately represented with the hypothesis class used for learning. Our study highlights the nuances associated with effective moral preference elicitation in practice and advocates for the cautious use of active learning as a methodology to learn moral preferences.
Abstract:While people generally trust AI to make decisions in various aspects of their lives, concerns arise when AI is involved in decisions with significant moral implications. The absence of a precise mathematical framework for moral reasoning intensifies these concerns, as ethics often defies simplistic mathematical models. Unlike fields such as logical reasoning, reasoning under uncertainty, and strategic decision-making, which have well-defined mathematical frameworks, moral reasoning lacks a broadly accepted framework. This absence raises questions about the confidence we can place in AI's moral decision-making capabilities. The environments in which AI systems are typically trained today seem insufficiently rich for such a system to learn ethics from scratch, and even if we had an appropriate environment, it is unclear how we might bring about such learning. An alternative approach involves AI learning from human moral decisions. This learning process can involve aggregating curated human judgments or demonstrations in specific domains, or leveraging a foundation model fed with a wide range of data. Still, concerns persist, given the imperfections in human moral decision making. Given this, why should we ever automate moral decision making -- is it not better to leave all moral decision making to humans? This paper lays out a number of reasons why we should expect AI systems to engage in decisions with a moral component, with brief discussions of the associated risks.
Abstract:We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes P, PPAD, PLS, $\Sigma_2^P$ , $\exists$R, and $\exists \forall$R.