Abstract:Preference elicitation frameworks feature heavily in the research on participatory ethical AI tools and provide a viable mechanism to enquire and incorporate the moral values of various stakeholders. As part of the elicitation process, surveys about moral preferences, opinions, and judgments are typically administered only once to each participant. This methodological practice is reasonable if participants' responses are stable over time such that, all other relevant factors being held constant, their responses today will be the same as their responses to the same questions at a later time. However, we do not know how often that is the case. It is possible that participants' true moral preferences change, are subject to temporary moods or whims, or are influenced by environmental factors we don't track. If participants' moral responses are unstable in such ways, it would raise important methodological and theoretical issues for how participants' true moral preferences, opinions, and judgments can be ascertained. We address this possibility here by asking the same survey participants the same moral questions about which patient should receive a kidney when only one is available ten times in ten different sessions over two weeks, varying only presentation order across sessions. We measured how often participants gave different responses to simple (Study One) and more complicated (Study Two) repeated scenarios. On average, the fraction of times participants changed their responses to controversial scenarios was around 10-18% across studies, and this instability is observed to have positive associations with response time and decision-making difficulty. We discuss the implications of these results for the efficacy of moral preference elicitation, highlighting the role of response instability in causing value misalignment between stakeholders and AI tools trained on their moral judgments.
Abstract:Computational preference elicitation methods are tools used to learn people's preferences quantitatively in a given context. Recent works on preference elicitation advocate for active learning as an efficient method to iteratively construct queries (framed as comparisons between context-specific cases) that are likely to be most informative about an agent's underlying preferences. In this work, we argue that the use of active learning for moral preference elicitation relies on certain assumptions about the underlying moral preferences, which can be violated in practice. Specifically, we highlight the following common assumptions (a) preferences are stable over time and not sensitive to the sequence of presented queries, (b) the appropriate hypothesis class is chosen to model moral preferences, and (c) noise in the agent's responses is limited. While these assumptions can be appropriate for preference elicitation in certain domains, prior research on moral psychology suggests they may not be valid for moral judgments. Through a synthetic simulation of preferences that violate the above assumptions, we observe that active learning can have similar or worse performance than a basic random query selection method in certain settings. Yet, simulation results also demonstrate that active learning can still be viable if the degree of instability or noise is relatively small and when the agent's preferences can be approximately represented with the hypothesis class used for learning. Our study highlights the nuances associated with effective moral preference elicitation in practice and advocates for the cautious use of active learning as a methodology to learn moral preferences.
Abstract:In many predictive contexts (e.g., credit lending), true outcomes are only observed for samples that were positively classified in the past. These past observations, in turn, form training datasets for classifiers that make future predictions. However, such training datasets lack information about the outcomes of samples that were (incorrectly) negatively classified in the past and can lead to erroneous classifiers. We present an approach that trains a classifier using available data and comes with a family of exploration strategies to collect outcome data about subpopulations that otherwise would have been ignored. For any exploration strategy, the approach comes with guarantees that (1) all sub-populations are explored, (2) the fraction of false positives is bounded, and (3) the trained classifier converges to a "desired" classifier. The right exploration strategy is context-dependent; it can be chosen to improve learning guarantees and encode context-specific group fairness properties. Evaluation on real-world datasets shows that this approach consistently boosts the quality of collected outcome data and improves the fraction of true positives for all groups, with only a small reduction in predictive utility.
Abstract:Automatically assigning tasks to people is challenging because human performance can vary across tasks for many reasons. This challenge is further compounded in real-life settings in which no oracle exists to assess the quality of human decisions and task assignments made. Instead, we find ourselves in a "closed" decision-making loop in which the same fallible human decisions we rely on in practice must also be used to guide task allocation. How can imperfect and potentially biased human decisions train an accurate allocation model? Our key insight is to exploit weak prior information on human-task similarity to bootstrap model training. We show that the use of such a weak prior can improve task allocation accuracy, even when human decision-makers are fallible and biased. We present both theoretical analysis and empirical evaluation over synthetic data and a social media toxicity detection task. Results demonstrate the efficacy of our approach.
Abstract:In real-world classification settings, individuals respond to classifier predictions by updating their features to increase their likelihood of receiving a particular (positive) decision (at a certain cost). Yet, when different demographic groups have different feature distributions or different cost functions, prior work has shown that individuals from minority groups often pay a higher cost to update their features. Fair classification aims to address such classifier performance disparities by constraining the classifiers to satisfy statistical fairness properties. However, we show that standard fairness constraints do not guarantee that the constrained classifier reduces the disparity in strategic manipulation cost. To address such biases in strategic settings and provide equal opportunities for strategic manipulation, we propose a constrained optimization framework that constructs classifiers that lower the strategic manipulation cost for the minority groups. We develop our framework by studying theoretical connections between group-specific strategic cost disparity and standard selection rate fairness metrics (e.g., statistical rate and true positive rate). Empirically, we show the efficacy of this approach over multiple real-world datasets.
Abstract:In hybrid human-machine deferral frameworks, a classifier can defer uncertain cases to human decision-makers (who are often themselves fallible). Prior work on simultaneous training of such classifier and deferral models has typically assumed access to an oracle during training to obtain true class labels for training samples, but in practice there often is no such oracle. In contrast, we consider a "closed" decision-making pipeline in which the same fallible human decision-makers used in deferral also provide training labels. How can imperfect and biased human expert labels be used to train a fair and accurate deferral framework? Our key insight is that by exploiting weak prior information, we can match experts to input examples to ensure fairness and accuracy of the resulting deferral framework, even when imperfect and biased experts are used in place of ground truth labels. The efficacy of our approach is shown both by theoretical analysis and by evaluation on two tasks.
Abstract:Assessing the diversity of a dataset of information associated with people is crucial before using such data for downstream applications. For a given dataset, this often involves computing the imbalance or disparity in the empirical marginal distribution of a protected attribute (e.g. gender, dialect, etc.). However, real-world datasets, such as images from Google Search or collections of Twitter posts, often do not have protected attributes labeled. Consequently, to derive disparity measures for such datasets, the elements need to hand-labeled or crowd-annotated, which are expensive processes. We propose a cost-effective approach to approximate the disparity of a given unlabeled dataset, with respect to a protected attribute, using a control set of labeled representative examples. Our proposed algorithm uses the pairwise similarity between elements in the dataset and elements in the control set to effectively bootstrap an approximation to the disparity of the dataset. Importantly, we show that using a control set whose size is much smaller than the size of the dataset is sufficient to achieve a small approximation error. Further, based on our theoretical framework, we also provide an algorithm to construct adaptive control sets that achieve smaller approximation errors than randomly chosen control sets. Simulations on two image datasets and one Twitter dataset demonstrate the efficacy of our approach (using random and adaptive control sets) in auditing the diversity of a wide variety of datasets.
Abstract:Machine learning models are often implemented in cohort with humans in the pipeline, with the model having an option to defer to a domain expert in cases where it has low confidence in its inference. Our goal is to design mechanisms for ensuring accuracy and fairness in such prediction systems that combine machine learning model inferences and domain expert predictions. Prior work on "deferral systems" in classification settings has focused on the setting of a pipeline with a single expert and aimed to accommodate the inaccuracies and biases of this expert to simultaneously learn an inference model and a deferral system. Our work extends this framework to settings where multiple experts are available, with each expert having their own domain of expertise and biases. We propose a framework that simultaneously learns a classifier and a deferral system, with the deferral system choosing to defer to one or more human experts in cases of input where the classifier has low confidence. We test our framework on a synthetic dataset and a content moderation dataset with biased synthetic experts, and show that it significantly improves the accuracy and fairness of the final predictions, compared to the baselines. We also collect crowdsourced labels for the content moderation task to construct a real-world dataset for the evaluation of hybrid machine-human frameworks and show that our proposed learning framework outperforms baselines on this real-world dataset as well.
Abstract:Extractive summarization algorithms can be used on Twitter data to return a set of posts that succinctly capture a topic. However, Twitter datasets have a significant fraction of posts written in different English dialects. We study the dialect bias in the summaries of such datasets generated by common summarization algorithms and observe that, for datasets that have sentences from more than one dialect, most summarization algorithms return summaries that under-represent the minority dialect. To correct for this bias, we propose a framework that takes an existing summarization algorithm as a blackbox and, using a small set of dialect-diverse sentences, returns a summary that is relatively more dialect-diverse. Crucially, our approach does not need the sentences in the dataset to have dialect labels, ensuring that the diversification process is independent of dialect classification and language identification models. We show the efficacy of our approach on Twitter datasets containing posts written in dialects used by different social groups defined by race, region or gender; in all cases, our approach leads to improved dialect diversity compared to the standard summarization approaches.
Abstract:One reason for the emergence of bias in AI systems is biased data -- datasets that may not be true representations of the underlying distributions -- and may over or under-represent groups with respect to protected attributes such as gender or race. We consider the problem of correcting such biases and learning distributions that are "fair", with respect to measures such as proportional representation and statistical parity, from the given samples. Our approach is based on a novel formulation of the problem of learning a fair distribution as a maximum entropy optimization problem with a given expectation vector and a prior distribution. Technically, our main contributions are: (1) a new second-order method to compute the (dual of the) maximum entropy distribution over an exponentially-sized discrete domain that turns out to be faster than previous methods, and (2) methods to construct prior distributions and expectation vectors that provably guarantee that the learned distributions satisfy a wide class of fairness criteria. Our results also come with quantitative bounds on the total variation distance between the empirical distribution obtained from the samples and the learned fair distribution. Our experimental results include testing our approach on the COMPAS dataset and showing that the fair distributions not only improve disparate impact values but when used to train classifiers only incur a small loss of accuracy.