Abstract:This paper introduces a new problem, Causal Abductive Reasoning on Video Events (CARVE), which involves identifying causal relationships between events in a video and generating hypotheses about causal chains that account for the occurrence of a target event. To facilitate research in this direction, we create two new benchmark datasets with both synthetic and realistic videos, accompanied by trigger-target labels generated through a novel counterfactual synthesis approach. To explore the challenge of solving CARVE, we present a Causal Event Relation Network (CERN) that examines the relationships between video events in temporal and semantic spaces to efficiently determine the root-cause trigger events. Through extensive experiments, we demonstrate the critical roles of event relational representation learning and interaction modeling in solving video causal reasoning challenges. The introduction of the CARVE task, along with the accompanying datasets and the CERN framework, will advance future research on video causal reasoning and significantly facilitate various applications, including video surveillance, root-cause analysis and movie content management.
Abstract:In this study, we address causal inference when only observational data and a valid causal ordering from the causal graph are available. We introduce a set of flow models that can recover component-wise, invertible transformation of exogenous variables. Our flow-based methods offer flexible model design while maintaining causal consistency regardless of the number of discretization steps. We propose design improvements that enable simultaneous learning of all causal mechanisms and reduce abduction and prediction complexity to linear O(n) relative to the number of layers, independent of the number of causal variables. Empirically, we demonstrate that our method outperforms previous state-of-the-art approaches and delivers consistent performance across a wide range of structural causal models in answering observational, interventional, and counterfactual questions. Additionally, our method achieves a significant reduction in computational time compared to existing diffusion-based techniques, making it practical for large structural causal models.
Abstract:Existing Large Vision-Language Models (LVLMs) excel at matching concepts across multi-modal inputs but struggle with compositional concepts and high-level relationships between entities. This paper introduces Progressive multi-granular Vision-Language alignments (PromViL), a novel framework to enhance LVLMs' ability in performing grounded compositional visual reasoning tasks. Our approach constructs a hierarchical structure of multi-modal alignments, ranging from simple to complex concepts. By progressively aligning textual descriptions with corresponding visual regions, our model learns to leverage contextual information from lower levels to inform higher-level reasoning. To facilitate this learning process, we introduce a data generation process that creates a novel dataset derived from Visual Genome, providing a wide range of nested compositional vision-language pairs. Experimental results demonstrate that our PromViL framework significantly outperforms baselines on various visual grounding and compositional question answering tasks.
Abstract:Sparse mixture of experts (SMoE) is an effective solution for scaling up model capacity without increasing the computational costs. A crucial component of SMoE is the router, responsible for directing the input to relevant experts; however, it also presents a major weakness, leading to routing inconsistencies and representation collapse issues. Instead of fixing the router like previous works, we propose an alternative that assigns experts to input via indirection, which employs the discrete representation of input that points to the expert. The discrete representations are learnt via vector quantization, resulting in a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE). We provide theoretical support and empirical evidence demonstrating the VQMoE's ability to overcome the challenges present in traditional routers. Through extensive evaluations on both large language models and vision tasks for pre-training and fine-tuning, we show that VQMoE achieves a 28% improvement in robustness compared to other SMoE routing methods, while maintaining strong performance in fine-tuning tasks.
Abstract:Forecasting temporal processes such as virus spreading in epidemics often requires more than just observed time-series data, especially at the beginning of a wave when data is limited. Traditional methods employ mechanistic models like the SIR family, which make strong assumptions about the underlying spreading process, often represented as a small set of compact differential equations. Data-driven methods such as deep neural networks make no such assumptions and can capture the generative process in more detail, but fail in long-term forecasting due to data limitations. We propose a new hybrid method called MP-PINN (Multi-Phase Physics-Informed Neural Network) to overcome the limitations of these two major approaches. MP-PINN instils the spreading mechanism into a neural network, enabling the mechanism to update in phases over time, reflecting the dynamics of the epidemics due to policy interventions. Experiments on COVID-19 waves demonstrate that MP-PINN achieves superior performance over pure data-driven or model-driven approaches for both short-term and long-term forecasting.
Abstract:Discovering new solid-state materials requires rapidly exploring the vast space of crystal structures and locating stable regions. Generating stable materials with desired properties and compositions is extremely difficult as we search for very small isolated pockets in the exponentially many possibilities, considering elements from the periodic table and their 3D arrangements in crystal lattices. Materials discovery necessitates both optimized solution structures and diversity in the generated material structures. Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements. We propose the Symmetry-aware Hierarchical Architecture for Flow-based Traversal (SHAFT), a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties. In particular, our model decomposes the exponentially large materials space into a hierarchy of subspaces consisting of symmetric space groups, lattice parameters, and atoms. We demonstrate that SHAFT significantly outperforms state-of-the-art iterative generative methods, such as Generative Flow Networks (GFlowNets) and Crystal Diffusion Variational AutoEncoders (CDVAE), in crystal structure generation tasks, achieving higher validity, diversity, and stability of generated structures optimized for target properties and requirements.
Abstract:Recognizing human activities in videos is challenging due to the spatio-temporal complexity and context-dependence of human interactions. Prior studies often rely on single input modalities, such as RGB or skeletal data, limiting their ability to exploit the complementary advantages across modalities. Recent studies focus on combining these two modalities using simple feature fusion techniques. However, due to the inherent disparities in representation between these input modalities, designing a unified neural network architecture to effectively leverage their complementary information remains a significant challenge. To address this, we propose a comprehensive multimodal framework for robust video-based human activity recognition. Our key contribution is the introduction of a novel compositional query machine, called COMPUTER ($\textbf{COMP}ositional h\textbf{U}man-cen\textbf{T}ric qu\textbf{ER}y$ machine), a generic neural architecture that models the interactions between a human of interest and its surroundings in both space and time. Thanks to its versatile design, COMPUTER can be leveraged to distill distinctive representations for various input modalities. Additionally, we introduce a consistency loss that enforces agreement in prediction between modalities, exploiting the complementary information from multimodal inputs for robust human movement recognition. Through extensive experiments on action localization and group activity recognition tasks, our approach demonstrates superior performance when compared with state-of-the-art methods. Our code is available at: https://github.com/tranxuantuyen/COMPUTER.
Abstract:The incorporation of physical information in machine learning frameworks is transforming medical image analysis (MIA). By integrating fundamental knowledge and governing physical laws, these models achieve enhanced robustness and interpretability. In this work, we explore the utility of physics-informed approaches for MIA (PIMIA) tasks such as registration, generation, classification, and reconstruction. We present a systematic literature review of over 80 papers on physics-informed methods dedicated to MIA. We propose a unified taxonomy to investigate what physics knowledge and processes are modelled, how they are represented, and the strategies to incorporate them into MIA models. We delve deep into a wide range of image analysis tasks, from imaging, generation, prediction, inverse imaging (super-resolution and reconstruction), registration, and image analysis (segmentation and classification). For each task, we thoroughly examine and present in a tabular format the central physics-guided operation, the region of interest (with respect to human anatomy), the corresponding imaging modality, the dataset used for model training, the deep network architecture employed, and the primary physical process, equation, or principle utilized. Additionally, we also introduce a novel metric to compare the performance of PIMIA methods across different tasks and datasets. Based on this review, we summarize and distil our perspectives on the challenges, open research questions, and directions for future research. We highlight key open challenges in PIMIA, including selecting suitable physics priors and establishing a standardized benchmarking platform.
Abstract:Large vision-language models (LVLMs) offer a novel capability for performing in-context learning (ICL) in Visual QA. When prompted with a few demonstrations of image-question-answer triplets, LVLMs have demonstrated the ability to discern underlying patterns and transfer this latent knowledge to answer new questions about unseen images without the need for expensive supervised fine-tuning. However, designing effective vision-language prompts, especially for compositional questions, remains poorly understood. Adapting language-only ICL techniques may not necessarily work because we need to bridge the visual-linguistic semantic gap: Symbolic concepts must be grounded in visual content, which does not share the syntactic linguistic structures. This paper introduces SADL, a new visual-linguistic prompting framework for the task. SADL revolves around three key components: SAmpling, Deliberation, and Pseudo-Labeling of image-question pairs. Given an image-question query, we sample image-question pairs from the training data that are in semantic proximity to the query. To address the compositional nature of questions, the deliberation step decomposes complex questions into a sequence of subquestions. Finally, the sequence is progressively annotated one subquestion at a time to generate a sequence of pseudo-labels. We investigate the behaviors of SADL under OpenFlamingo on large-scale Visual QA datasets, namely GQA, GQA-OOD, CLEVR, and CRIC. The evaluation demonstrates the critical roles of sampling in the neighborhood of the image, the decomposition of complex questions, and the accurate pairing of the subquestions and labels. These findings do not always align with those found in language-only ICL, suggesting fresh insights in vision-language settings.
Abstract:Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost. Regardless of several notable successes of SMoE, effective training such architecture remains elusive due to the representation collapse problem, which in turn harms model performance and causes parameter redundancy. In this work, we present Similarity-based Sparse Mixture of Experts (SimSMoE), a novel similarity of neural network algorithm, that guarantees a solution to address the representation collapse issue between experts given a fixed FLOPs budget. We conduct extensive empirical evaluations on three large language models for both Pre-training and Fine-tuning tasks to illustrate the efficacy, robustness, and scalability of our method. The results demonstrate that SimSMoE significantly enhances existing routing policy and outperforms other SMoE training methods in performance for the tasks.