School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 2100023, China
Abstract:The complex dependencies and propagative faults inherent in microservices, characterized by a dense network of interconnected services, pose significant challenges in identifying the underlying causes of issues. Prompt identification and resolution of disruptive problems are crucial to ensure rapid recovery and maintain system stability. Numerous methodologies have emerged to address this challenge, primarily focusing on diagnosing failures through symptomatic data. This survey aims to provide a comprehensive, structured review of root cause analysis (RCA) techniques within microservices, exploring methodologies that include metrics, traces, logs, and multi-model data. It delves deeper into the methodologies, challenges, and future trends within microservices architectures. Positioned at the forefront of AI and automation advancements, it offers guidance for future research directions.
Abstract:Clustering holds profound significance in data mining. In recent years, graph convolutional network (GCN) has emerged as a powerful tool for deep clustering, integrating both graph structural information and node attributes. However, most existing methods ignore the higher-order structural information of the graph. Evidently, nodes within the same cluster can establish distant connections. Besides, recent deep clustering methods usually apply a self-supervised module to monitor the training process of their model, focusing solely on node attributes without paying attention to graph structure. In this paper, we propose a novel graph clustering network to make full use of graph structural information. To capture the higher-order structural information, we design a graph mutual infomax module, effectively maximizing mutual information between graph-level and node-level representations, and employ a trinary self-supervised module that includes modularity as a structural constraint. Our proposed model outperforms many state-of-the-art methods on various datasets, demonstrating its superiority.
Abstract:Fault localization is challenging in online micro-service due to the wide variety of monitoring data volume, types, events and complex interdependencies in service and components. Faults events in services are propagative and can trigger a cascade of alerts in a short period of time. In the industry, fault localization is typically conducted manually by experienced personnel. This reliance on experience is unreliable and lacks automation. Different modules present information barriers during manual localization, making it difficult to quickly align during urgent faults. This inefficiency lags stability assurance to minimize fault detection and repair time. Though actionable methods aimed to automatic the process, the accuracy and efficiency are less than satisfactory. The precision of fault localization results is of paramount importance as it underpins engineers trust in the diagnostic conclusions, which are derived from multiple perspectives and offer comprehensive insights. Therefore, a more reliable method is required to automatically identify the associative relationships among fault events and propagation path. To achieve this, KGroot uses event knowledge and the correlation between events to perform root cause reasoning by integrating knowledge graphs and GCNs for RCA. FEKG is built based on historical data, an online graph is constructed in real-time when a failure event occurs, and the similarity between each knowledge graph and online graph is compared using GCNs to pinpoint the fault type through a ranking strategy. Comprehensive experiments demonstrate KGroot can locate the root cause with accuracy of 93.5% top 3 potential causes in second-level. This performance matches the level of real-time fault diagnosis in the industrial environment and significantly surpasses state-of-the-art baselines in RCA in terms of effectiveness and efficiency.
Abstract:Blurry video frame interpolation (BVFI) aims to generate high-frame-rate clear videos from low-frame-rate blurry videos, is a challenging but important topic in the computer vision community. Blurry videos not only provide spatial and temporal information like clear videos, but also contain additional motion information hidden in each blurry frame. However, existing BVFI methods usually fail to fully leverage all valuable information, which ultimately hinders their performance. In this paper, we propose a simple end-to-end three-stage framework to fully explore useful information from blurry videos. The frame interpolation stage designs a temporal deformable network to directly sample useful information from blurry inputs and synthesize an intermediate frame at an arbitrary time interval. The temporal feature fusion stage explores the long-term temporal information for each target frame through a bi-directional recurrent deformable alignment network. And the deblurring stage applies a transformer-empowered Taylor approximation network to recursively recover the high-frequency details. The proposed three-stage framework has clear task assignment for each module and offers good expandability, the effectiveness of which are demonstrated by various experimental results. We evaluate our model on four benchmarks, including the Adobe240 dataset, GoPro dataset, YouTube240 dataset and Sony dataset. Quantitative and qualitative results indicate that our model outperforms existing SOTA methods. Besides, experiments on real-world blurry videos also indicate the good generalization ability of our model.
Abstract:The emergence of self-supervised representation (i.e., wav2vec 2.0) allows speaker-recognition approaches to process spoken signals through foundation models built on speech data. Nevertheless, effective fusion on the representation requires further investigating, due to the inclusion of fixed or sub-optimal temporal pooling strategies. Despite of improved strategies considering graph learning and graph attention factors, non-injective aggregation still exists in the approaches, which may influence the performance for speaker recognition. In this regard, we propose a speaker recognition approach using Isomorphic Graph ATtention network (IsoGAT) on self-supervised representation. The proposed approach contains three modules of representation learning, graph attention, and aggregation, jointly considering learning on the self-supervised representation and the IsoGAT. Then, we perform experiments for speaker recognition tasks on VoxCeleb1\&2 datasets, with the corresponding experimental results demonstrating the recognition performance for the proposed approach, compared with existing pooling approaches on the self-supervised representation.
Abstract:Due to the enormous population growth of cities in recent years, objects are frequently lost and unclaimed on public transportation, in restaurants, or any other public areas. While services like Find My iPhone can easily identify lost electronic devices, more valuable objects cannot be tracked in an intelligent manner, making it impossible for administrators to reclaim a large number of lost and found items in a timely manner. We present a method that significantly reduces the complexity of searching by comparing previous images of lost and recovered things provided by the owner with photos taken when registered lost and found items are received. In this research, we will primarily design a photo matching network by combining the fine-tuning method of MobileNetv2 with CBAM Attention and using the Internet framework to develop an online lost and found image identification system. Our implementation gets a testing accuracy of 96.8% using only 665.12M GLFOPs and 3.5M training parameters. It can recognize practice images and can be run on a regular laptop.
Abstract:Graph filters are crucial tools in processing the spectrum of graph signals. In this paper, we propose to design universal IIR graph filters with low computational complexity by using three kinds of functions, which are Butterworth, Chebyshev, and Elliptic functions, respectively. Specifically, inspired by the classical analog filter design method, we first derive the zeros and poles of graph frequency responses. With these zeros and poles, we construct the conjugate graph filters to design the Butterworth high pass graph filter, Chebyshev high pass graph filter, and Elliptic high pass graph filter, respectively. On this basis, we further propose to construct a desired graph filter of low pass, band pass, and band stop by mapping the parameters of the desired graph filter to those of the equivalent high pass graph filter. Furthermore, we propose to set the graph filter order given the maximum passband attenuation and the minimum stopband attenuation. Our numerical results show that the proposed graph filter design methods realize the desired frequency response more accurately than the autoregressive moving average (ARMA) graph filter design method, the linear least-squares fitting (LLS) based graph filter design method, and the Chebyshev FIR polynomial graph filter design method.
Abstract:Graph signal processing (GSP) is an effective tool in dealing with data residing in irregular domains. In GSP, the optimal graph filter is one of the essential techniques, owing to its ability to recover the original signal from the distorted and noisy version. However, most current research focuses on static graph signals and ordinary space/time or frequency domains. The time-varying graph signals have a strong ability to capture the features of real-world data, and fractional domains can provide a more suitable space to separate the signal and noise. In this paper, the optimal time-vertex graph filter and its Wiener-Hopf equation are developed, using the product graph framework. Furthermore, the optimal time-vertex graph filter in fractional domains is also developed, using the graph fractional Laplacian operator and graph fractional Fourier transform. Numerical simulations on real-world datasets will demonstrate the superiority of the optimal time-vertex graph filter in fractional domains over the optimal time-vertex graph filter in ordinary domains and the optimal static graph filter in fractional domains.
Abstract:In this paper, we present Generic Object Detection (GenOD), one of the largest object detection systems deployed to a web-scale general visual search engine that can detect over 900 categories for all Microsoft Bing Visual Search queries in near real-time. It acts as a fundamental visual query understanding service that provides object-centric information and shows gains in multiple production scenarios, improving upon domain-specific models. We discuss the challenges of collecting data, training, deploying and updating such a large-scale object detection model with multiple dependencies. We discuss a data collection pipeline that reduces per-bounding box labeling cost by 81.5% and latency by 61.2% while improving on annotation quality. We show that GenOD can improve weighted average precision by over 20% compared to multiple domain-specific models. We also improve the model update agility by nearly 2 times with the proposed disjoint detector training compared to joint fine-tuning. Finally we demonstrate how GenOD benefits visual search applications by significantly improving object-level search relevance by 54.9% and user engagement by 59.9%.
Abstract:Text is the most widely used means of communication today. This data is abundant but nevertheless complex to exploit within algorithms. For years, scientists have been trying to implement different techniques that enable computers to replicate some mechanisms of human reading. During the past five years, research disrupted the capacity of the algorithms to unleash the value of text data. It brings today, many opportunities for the insurance industry.Understanding those methods and, above all, knowing how to apply them is a major challenge and key to unleash the value of text data that have been stored for many years. Processing language with computer brings many new opportunities especially in the insurance sector where reports are central in the information used by insurers. SCOR's Data Analytics team has been working on the implementation of innovative tools or products that enable the use of the latest research on text analysis. Understanding text mining techniques in insurance enhances the monitoring of the underwritten risks and many processes that finally benefit policyholders.This article proposes to explain opportunities that Natural Language Processing (NLP) are providing to insurance. It details different methods used today in practice traces back the story of them. We also illustrate the implementation of certain methods using open source libraries and python codes that we have developed to facilitate the use of these techniques.After giving a general overview on the evolution of text mining during the past few years,we share about how to conduct a full study with text mining and share some examples to serve those models into insurance products or services. Finally, we explained in more details every step that composes a Natural Language Processing study to ensure the reader can have a deep understanding on the implementation.