Abstract:Blurry video frame interpolation (BVFI) aims to generate high-frame-rate clear videos from low-frame-rate blurry videos, is a challenging but important topic in the computer vision community. Blurry videos not only provide spatial and temporal information like clear videos, but also contain additional motion information hidden in each blurry frame. However, existing BVFI methods usually fail to fully leverage all valuable information, which ultimately hinders their performance. In this paper, we propose a simple end-to-end three-stage framework to fully explore useful information from blurry videos. The frame interpolation stage designs a temporal deformable network to directly sample useful information from blurry inputs and synthesize an intermediate frame at an arbitrary time interval. The temporal feature fusion stage explores the long-term temporal information for each target frame through a bi-directional recurrent deformable alignment network. And the deblurring stage applies a transformer-empowered Taylor approximation network to recursively recover the high-frequency details. The proposed three-stage framework has clear task assignment for each module and offers good expandability, the effectiveness of which are demonstrated by various experimental results. We evaluate our model on four benchmarks, including the Adobe240 dataset, GoPro dataset, YouTube240 dataset and Sony dataset. Quantitative and qualitative results indicate that our model outperforms existing SOTA methods. Besides, experiments on real-world blurry videos also indicate the good generalization ability of our model.
Abstract:Magnetic resonance imaging (MRI) tasks often involve multiple contrasts. Recently, numerous deep learning-based multi-contrast MRI super-resolution (SR) and reconstruction methods have been proposed to explore the complementary information from the multi-contrast images. However, these methods either construct parameter-sharing networks or manually design fusion rules, failing to accurately model the correlations between multi-contrast images and lacking certain interpretations. In this paper, we propose a multi-contrast convolutional dictionary (MC-CDic) model under the guidance of the optimization algorithm with a well-designed data fidelity term. Specifically, we bulid an observation model for the multi-contrast MR images to explicitly model the multi-contrast images as common features and unique features. In this way, only the useful information in the reference image can be transferred to the target image, while the inconsistent information will be ignored. We employ the proximal gradient algorithm to optimize the model and unroll the iterative steps into a deep CDic model. Especially, the proximal operators are replaced by learnable ResNet. In addition, multi-scale dictionaries are introduced to further improve the model performance. We test our MC-CDic model on multi-contrast MRI SR and reconstruction tasks. Experimental results demonstrate the superior performance of the proposed MC-CDic model against existing SOTA methods. Code is available at https://github.com/lpcccc-cv/MC-CDic.
Abstract:Motion-based video frame interpolation (VFI) methods have made remarkable progress with the development of deep convolutional networks over the past years. While their performance is often jeopardized by the inaccuracy of flow map estimation, especially in the case of large motion and occlusion. In this paper, we propose a flow guidance deformable compensation network (FGDCN) to overcome the drawbacks of existing motion-based methods. FGDCN decomposes the frame sampling process into two steps: a flow step and a deformation step. Specifically, the flow step utilizes a coarse-to-fine flow estimation network to directly estimate the intermediate flows and synthesizes an anchor frame simultaneously. To ensure the accuracy of the estimated flow, a distillation loss and a task-oriented loss are jointly employed in this step. Under the guidance of the flow priors learned in step one, the deformation step designs a pyramid deformable compensation network to compensate for the missing details of the flow step. In addition, a pyramid loss is proposed to supervise the model in both the image and frequency domain. Experimental results show that the proposed algorithm achieves excellent performance on various datasets with fewer parameters.