Abstract:Heterogeneous graphs (HGs) are composed of multiple types of nodes and edges, making it more effective in capturing the complex relational structures inherent in the real world. However, in real-world scenarios, labeled data is often difficult to obtain, which limits the applicability of semi-supervised approaches. Self-supervised learning aims to enable models to automatically learn useful features from data, effectively addressing the challenge of limited labeling data. In this paper, we propose a novel contrastive learning framework for heterogeneous graphs (ASHGCL), which incorporates three distinct views, each focusing on node attributes, high-order and low-order structural information, respectively, to effectively capture attribute information, high-order structures, and low-order structures for node representation learning. Furthermore, we introduce an attribute-enhanced positive sample selection strategy that combines both structural information and attribute information, effectively addressing the issue of sampling bias. Extensive experiments on four real-world datasets show that ASHGCL outperforms state-of-the-art unsupervised baselines and even surpasses some supervised benchmarks.
Abstract:Node classification in graphs aims to predict the categories of unlabeled nodes by utilizing a small set of labeled nodes. However, weighted graphs often contain noisy edges and anomalous edge weights, which can distort fine-grained relationships between nodes and hinder accurate classification. We propose the Edge Weight-aware Graph Structure Learning (EWGSL) method, which combines weight learning and graph structure learning to address these issues. EWGSL improves node classification by redefining attention coefficients in graph attention networks to incorporate node features and edge weights. It also applies graph structure learning to sparsify attention coefficients and uses a modified InfoNCE loss function to enhance performance by adapting to denoised graph weights. Extensive experimental results show that EWGSL has an average Micro-F1 improvement of 17.8% compared with the best baseline.
Abstract:Clustering holds profound significance in data mining. In recent years, graph convolutional network (GCN) has emerged as a powerful tool for deep clustering, integrating both graph structural information and node attributes. However, most existing methods ignore the higher-order structural information of the graph. Evidently, nodes within the same cluster can establish distant connections. Besides, recent deep clustering methods usually apply a self-supervised module to monitor the training process of their model, focusing solely on node attributes without paying attention to graph structure. In this paper, we propose a novel graph clustering network to make full use of graph structural information. To capture the higher-order structural information, we design a graph mutual infomax module, effectively maximizing mutual information between graph-level and node-level representations, and employ a trinary self-supervised module that includes modularity as a structural constraint. Our proposed model outperforms many state-of-the-art methods on various datasets, demonstrating its superiority.
Abstract:Multi-behavioral sequential recommendation has recently attracted increasing attention. However, existing methods suffer from two major limitations. Firstly, user preferences and intents can be described in fine-grained detail from multiple perspectives; yet, these methods fail to capture their multi-aspect nature. Secondly, user behaviors may contain noises, and most existing methods could not effectively deal with noises. In this paper, we present an attentive recurrent model with multiple projections to capture Multi-Aspect preferences and INTents (MAINT in short). To extract multi-aspect preferences from target behaviors, we propose a multi-aspect projection mechanism for generating multiple preference representations from multiple aspects. To extract multi-aspect intents from multi-typed behaviors, we propose a behavior-enhanced LSTM and a multi-aspect refinement attention mechanism. The attention mechanism can filter out noises and generate multiple intent representations from different aspects. To adaptively fuse user preferences and intents, we propose a multi-aspect gated fusion mechanism. Extensive experiments conducted on real-world datasets have demonstrated the effectiveness of our model.