Abstract:Clustering holds profound significance in data mining. In recent years, graph convolutional network (GCN) has emerged as a powerful tool for deep clustering, integrating both graph structural information and node attributes. However, most existing methods ignore the higher-order structural information of the graph. Evidently, nodes within the same cluster can establish distant connections. Besides, recent deep clustering methods usually apply a self-supervised module to monitor the training process of their model, focusing solely on node attributes without paying attention to graph structure. In this paper, we propose a novel graph clustering network to make full use of graph structural information. To capture the higher-order structural information, we design a graph mutual infomax module, effectively maximizing mutual information between graph-level and node-level representations, and employ a trinary self-supervised module that includes modularity as a structural constraint. Our proposed model outperforms many state-of-the-art methods on various datasets, demonstrating its superiority.
Abstract:Multi-behavioral sequential recommendation has recently attracted increasing attention. However, existing methods suffer from two major limitations. Firstly, user preferences and intents can be described in fine-grained detail from multiple perspectives; yet, these methods fail to capture their multi-aspect nature. Secondly, user behaviors may contain noises, and most existing methods could not effectively deal with noises. In this paper, we present an attentive recurrent model with multiple projections to capture Multi-Aspect preferences and INTents (MAINT in short). To extract multi-aspect preferences from target behaviors, we propose a multi-aspect projection mechanism for generating multiple preference representations from multiple aspects. To extract multi-aspect intents from multi-typed behaviors, we propose a behavior-enhanced LSTM and a multi-aspect refinement attention mechanism. The attention mechanism can filter out noises and generate multiple intent representations from different aspects. To adaptively fuse user preferences and intents, we propose a multi-aspect gated fusion mechanism. Extensive experiments conducted on real-world datasets have demonstrated the effectiveness of our model.