Abstract:We study learning in a dynamically evolving environment modeled as a Markov game between a learner and a strategic opponent that can adapt to the learner's strategies. While most existing works in Markov games focus on external regret as the learning objective, external regret becomes inadequate when the adversaries are adaptive. In this work, we focus on \emph{policy regret} -- a counterfactual notion that aims to compete with the return that would have been attained if the learner had followed the best fixed sequence of policy, in hindsight. We show that if the opponent has unbounded memory or if it is non-stationary, then sample-efficient learning is not possible. For memory-bounded and stationary, we show that learning is still statistically hard if the set of feasible strategies for the learner is exponentially large. To guarantee learnability, we introduce a new notion of \emph{consistent} adaptive adversaries, wherein, the adversary responds similarly to similar strategies of the learner. We provide algorithms that achieve $\sqrt{T}$ policy regret against memory-bounded, stationary, and consistent adversaries.
Abstract:Deep neural networks are vulnerable to backdoor attacks, a type of adversarial attack that poisons the training data to manipulate the behavior of models trained on such data. Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data. Early works on clean-label attacks added triggers to a random subset of the training set, ignoring the fact that samples contribute unequally to the attack's success. This results in high poisoning rates and low attack success rates. To alleviate the problem, several supervised learning-based sample selection strategies have been proposed. However, these methods assume access to the entire labeled training set and require training, which is expensive and may not always be practical. This work studies a new and more practical (but also more challenging) threat model where the attacker only provides data for the target class (e.g., in face recognition systems) and has no knowledge of the victim model or any other classes in the training set. We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate in this setting. Our threat model poses a serious threat in training machine learning models with third-party datasets, since the attack can be performed effectively with limited information. Experiments on benchmark datasets illustrate the effectiveness of our strategies in improving clean-label backdoor attacks.
Abstract:We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.
Abstract:We seek to understand what facilitates sample-efficient learning from historical datasets for sequential decision-making, a problem that is popularly known as offline reinforcement learning (RL). Further, we are interested in algorithms that enjoy sample efficiency while leveraging (value) function approximation. In this paper, we address these fundamental questions by (i) proposing a notion of data diversity that subsumes the previous notions of coverage measures in offline RL and (ii) using this notion to {unify} three distinct classes of offline RL algorithms based on version spaces (VS), regularized optimization (RO), and posterior sampling (PS). We establish that VS-based, RO-based, and PS-based algorithms, under standard assumptions, achieve \emph{comparable} sample efficiency, which recovers the state-of-the-art sub-optimality bounds for finite and linear model classes with the standard assumptions. This result is surprising, given that the prior work suggested an unfavorable sample complexity of the RO-based algorithm compared to the VS-based algorithm, whereas posterior sampling is rarely considered in offline RL due to its explorative nature. Notably, our proposed model-free PS-based algorithm for offline RL is {novel}, with sub-optimality bounds that are {frequentist} (i.e., worst-case) in nature.
Abstract:Deep hedging is a promising direction in quantitative finance, incorporating models and techniques from deep learning research. While giving excellent hedging strategies, models inherently requires careful treatment in designing architectures for neural networks. To mitigate such difficulties, we introduce SigFormer, a novel deep learning model that combines the power of path signatures and transformers to handle sequential data, particularly in cases with irregularities. Path signatures effectively capture complex data patterns, while transformers provide superior sequential attention. Our proposed model is empirically compared to existing methods on synthetic data, showcasing faster learning and enhanced robustness, especially in the presence of irregular underlying price data. Additionally, we validate our model performance through a real-world backtest on hedging the SP 500 index, demonstrating positive outcomes.
Abstract:The ability to detect OOD data is a crucial aspect of practical machine learning applications. In this work, we show that cosine similarity between the test feature and the typical ID feature is a good indicator of OOD data. We propose Class Typical Matching (CTM), a post hoc OOD detection algorithm that uses a cosine similarity scoring function. Extensive experiments on multiple benchmarks show that CTM outperforms existing post hoc OOD detection methods.
Abstract:We propose a novel algorithm for offline reinforcement learning called Value Iteration with Perturbed Rewards (VIPeR), which amalgamates the pessimism principle with random perturbations of the value function. Most current offline RL algorithms explicitly construct statistical confidence regions to obtain pessimism via lower confidence bounds (LCB), which cannot easily scale to complex problems where a neural network is used to estimate the value functions. Instead, VIPeR implicitly obtains pessimism by simply perturbing the offline data multiple times with carefully-designed i.i.d. Gaussian noises to learn an ensemble of estimated state-action {value functions} and acting greedily with respect to the minimum of the ensemble. The estimated state-action values are obtained by fitting a parametric model (e.g., neural networks) to the perturbed datasets using gradient descent. As a result, VIPeR only needs $\mathcal{O}(1)$ time complexity for action selection, while LCB-based algorithms require at least $\Omega(K^2)$, where $K$ is the total number of trajectories in the offline data. We also propose a novel data-splitting technique that helps remove a factor involving the log of the covering number in our bound. We prove that VIPeR yields a provable uncertainty quantifier with overparameterized neural networks and enjoys a bound on sub-optimality of $\tilde{\mathcal{O}}( { \kappa H^{5/2} \tilde{d} }/{\sqrt{K}})$, where $\tilde{d}$ is the effective dimension, $H$ is the horizon length and $\kappa$ measures the distributional shift. We corroborate the statistical and computational efficiency of VIPeR with an empirical evaluation on a wide set of synthetic and real-world datasets. To the best of our knowledge, VIPeR is the first algorithm for offline RL that is provably efficient for general Markov decision processes (MDPs) with neural network function approximation.
Abstract:Sample-efficient offline reinforcement learning (RL) with linear function approximation has recently been studied extensively. Much of prior work has yielded the minimax-optimal bound of $\tilde{\mathcal{O}}(\frac{1}{\sqrt{K}})$, with $K$ being the number of episodes in the offline data. In this work, we seek to understand instance-dependent bounds for offline RL with function approximation. We present an algorithm called Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI), which leverages data bootstrapping and constrained optimization on top of pessimism. We show that under a partial data coverage assumption, that of \emph{concentrability} with respect to an optimal policy, the proposed algorithm yields a fast rate of $\tilde{\mathcal{O}}(\frac{1}{K})$ for offline RL when there is a positive gap in the optimal Q-value functions, even when the offline data were adaptively collected. Moreover, when the linear features of the optimal actions in the states reachable by an optimal policy span those reachable by the behavior policy and the optimal actions are unique, offline RL achieves absolute zero sub-optimality error when $K$ exceeds a (finite) instance-dependent threshold. To the best of our knowledge, these are the first $\tilde{\mathcal{O}}(\frac{1}{K})$ bound and absolute zero sub-optimality bound respectively for offline RL with linear function approximation from adaptive data with partial coverage. We also provide instance-agnostic and instance-dependent information-theoretical lower bounds to complement our upper bounds.
Abstract:We consider the problem of personalised news recommendation where each user consumes news in a sequential fashion. Existing personalised news recommendation methods focus on exploiting user interests and ignores exploration in recommendation, which leads to biased feedback loops and hurt recommendation quality in the long term. We build on contextual bandits recommendation strategies which naturally address the exploitation-exploration trade-off. The main challenges are the computational efficiency for exploring the large-scale item space and utilising the deep representations with uncertainty. We propose a two-stage hierarchical topic-news deep contextual bandits framework to efficiently learn user preferences when there are many news items. We use deep learning representations for users and news, and generalise the neural upper confidence bound (UCB) policies to generalised additive UCB and bilinear UCB. Empirical results on a large-scale news recommendation dataset show that our proposed policies are efficient and outperform the baseline bandit policies.
Abstract:This thesis rigorously studies fundamental reinforcement learning (RL) methods in modern practical considerations, including robust RL, distributional RL, and offline RL with neural function approximation. The thesis first prepares the readers with an overall overview of RL and key technical background in statistics and optimization. In each of the settings, the thesis motivates the problems to be studied, reviews the current literature, provides computationally efficient algorithms with provable efficiency guarantees, and concludes with future research directions. The thesis makes fundamental contributions to the three settings above, both algorithmically, theoretically, and empirically, while staying relevant to practical considerations.